Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Deligne P., Kazhdan D., Etingof P. — Quantum fields and strings: A course for mathematicians (Vol. 1)
Deligne P., Kazhdan D., Etingof P. — Quantum fields and strings: A course for mathematicians (Vol. 1)



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Quantum fields and strings: A course for mathematicians (Vol. 1)

Авторы: Deligne P., Kazhdan D., Etingof P.

Аннотация:

Ideas from quantum field theory and string theory have had considerable impact on mathematics over the past 20 years. Advances in many different areas have been inspired by insights from physics.
In 1996 — 97 the Institute for Advanced Study (Princeton, NJ) organized a special year-long program designed to teach mathematicians the basic physical ideas which underlie the mathematical applications. The purpose is eloquently stated in a letter written by Robert MacPherson: "The goal is to create and convey an understanding, in terms congenial to mathematicians, of some fundamental notions of physics ... [and to] develop the sort of intuition common among physicists for those who are used to thought processes stemming from geometry and algebra."
These volumes are a written record of the program. They contain notes from several long and many short courses covering various aspects of quantum field theory and perturbative string theory. The courses were given by leading physicists and the notes were written either by the speakers or by mathematicians who participated in the program. The book also includes problems and solutions worked out by the editors and other leading participants. Interspersed are mathematical texts with background material and commentary on some topics covered in the lectures.
These two volumes present the first truly comprehensive introduction to this field aimed at a mathematics audience. They offer a unique opportunity for mathematicians and mathematical physicists to learn about the beautiful and difficult subjects of quantum field theory and string theory.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1991

Количество страниц: 723

Добавлена в каталог: 19.06.2006

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Polyakov model      1232
Potential      28 145
Potential, effective      see “Effective potential”
Potential, scattering      406ff
Prequantization line bundle      368
Primary held      29 757ff 824 838
Propagator      29 426 529 1188
Purely rionrenornializabli Lugrangian      1120
Q-cohomology      1316ff 1319ff 13835
QCD      788 1434ff 1439ff
Quantitation      367ff 446ff 479ff 469 515ff 519ff 545ff 679 903 1248
Quantum, cohomology      1334ff
Quantum, electrodynamics      574
Quantum, field      29
Quantum, field theory      526ff
Quark      29
R-charge      1487
R-symmetry      29 236 254 257 259 1296ff 1314 1382 1427 1432
Radial quantization      758
Ramond sector      29 745 918ff
Rarita — Schwmger field      29 155 920
Reflection positivity      690 705
Renonnalization group      551ff 777ff 1163
Renonnalization group, equation      30 563ff 573ff 703 1347
Renonnalization group, flow      30 566ff 570 573ff
Renormalization      30 429ff 784ff
Renormalization, finite      563ff
Renormalization, scheme (prescription)      440 566ff 897
Renormalized, charge      534
Renormalized, couplings      1183 1187
Renormalized, field theory      435ff
Renormalized, mass      531
RNS string      916ff 981ff
S-matrix      31 529 531 1175ff
Scalar field      192ff 438 539 621
SCALE      31 565ff
Scale invariant field theory      437
Scattering      31
Scattering, amplitude      462
Scattering, matrix, set also S-matrix      31 412 531ff
Scattering, theory      31 405ff 4615
Schwingcr function      389ff
screening      575 1237
SCSY      34 41ff 91 930
Seiberg — Witten equations      1388 1393ff
Semi-classical approximation      31
Smooth Dcligne cobomology      see “Deligne coliomology”
Soliton      32 187 1247ff 12815
Spasetime      32 150 234
Spiit-statistics theorem      32
Spinor      32 995 395
Spinor, field      195ff 223 621 1100
Standard model      439 1167
States      5155 831
Stress-energy tensor      178ff 827 1153 1175
String, theory      807ff 11164
Sugawara construction      1050
Super Braucr group      11411
Super, algebra      48ff
Super, current      240 307 634
Super, field      236 128 1348ff
Super, gravity      33 989ff 1013ff
Super, Lie Algebra      39
Super, manifold      65ff 615ff
Super, Minkowski space      23 231ff 243ff
Super, Poincare group (algebra)      28 231ff 633 642 1110
Super, potential      296 1428 1441
Super, QCD      1434ff 1139ff
Super, trace      54tf
Superrcnormauzahlc Held theory      436 439 1271
Surma model      see “$\sigma$-model”
Symmetry      165ff
Symmetry, breakin      34 450 1106 1125ff 1147ff 1342 1344 1345
Symmetry, breakin, chiral      1200 1340 1445
Symmetry, breakin, continuous      1133ff
Symmetry, breakin, global      1152 1448
Symmetry, gauge      189 1147ff
Symmetry, supersymmetry (SUSY)      34 41ff 227ff 981ff 1106ff 1281ff 1291ff 1426ff
Symplectic manifold      367ff
Tachyon      35 837 864
Temporal gauge      see “Gauge temporal”
Theta function      795 889 973
Time ordering      394
Topological term      35 215ff 223 1200 see
Truncated Wightman functions      401
Twisted chiral supernekl      259 333 1417
Twisting a theory      1317 1382S
Type I superstring      935ff
Type II superstring      932ff
units of measurement      153
Unrenormalizabk      436
UV (ultraviolet)      36 574 1332
UV (ultraviolet), fixed point      573 581
Vacuum, moduli space      see “Moduli space of vacua”
Vacuum, vacua      36 185
Variational 1-form      160ff
Vector multiplet      313ff 321ff 321ff 3375 347ff 642ff 1352ff
Verlinde formula      801
Vertex operators      765 818 838 962S
Virasoro algebra      743 757ff 830ff 923 1043
Ward identities      36 750ff 793
Wavelength      36
Weinberg theorem      432
Weinberg theorem, strong      432 142
Wess — Zumino — Wttten (WZW) model      791ff
Wess — Zumino — Wttten (WZW) model, gauge      124
Wess — Zumino — Wttten (WZW) model, model      1427
Wess — Zumino — Wttten (WZW) model, term      217
Weyl, quantisation      370 517
Weyl, reseating      855
Weyl, spmor      32 329 1110
Wick, formula      1204
Wick, rotation      221ff 387 428 147 1381 1420
Wightman, axioms      380 571
Wightman, function      380ff 401 409 421 447 1134
Wilson line operator      1190 1215ff 1239 1258
Wilson loop      36 1215ff 1433
Wilsonian, effective action      1429
Wilsonian, scheme      555ff
Worldline      37
Worldsheet      37
Yang — Mills theory      207ff 299ff 310ff 321ff 331ff 337ff 545ff 628 1263ff 1341ff 1351ff 1360ff 1379ff
Yukawa coupling      37 439
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте