Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Buser P. — Geometry and spectra of compact riemann surfaces
Buser P. — Geometry and spectra of compact riemann surfaces



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Geometry and spectra of compact riemann surfaces

Автор: Buser P.

Аннотация:

This monograph is a self-contained introduction to the geometry of Riemann Surfaces of constant curvature -1 and their length and eigenvalue spectra. It focuses on two subjects: the geometric theory of compact Riemann surfaces of genus greater than one, and the relationship of the Laplace operator with the geometry of such surfaces. The first part of the book is written in textbook form at the graduate level, with few requisites other than background in either differential geometry or complex Riemann surface theory. It begins with an account of the Fenchel-Nielsen approach to Teichmüller Space. Hyperbolic trigonometry and Bers’ partition theorem (with a new proof which yields explicit bounds) are shown to be simple but powerful tools in this context. The second part of the book is a self-contained introduction to the spectrum of the Laplacian based on head equations. The approach chosen yields a simple proof that compact Riemann surfaces have the same eigenvalues if and only if they have the same length spectrum. Later chapters deal with recent developments on isospectrality, Sunada’s construction, a simplified proof of Wolpert’s theorem, and an estimate for the number of pairwise isospectral non-isometric examples which depends only on genus. Research workers and graduate students interested in compact Riemann surfaces will find here a number of useful tools and insights to apply to their investigations.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1992

Количество страниц: 453

Добавлена в каталог: 19.06.2006

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Point at infinity in the hypeitoloid model      50
Point in the quaternion model      49
Point, singular      313
Point-like      49
Polygon, canonical      168
Polygon, normal canonical      168 383
Polygon, oriented      34
Pre-trace formula      238
Prime geodesic      22 228 245 291
Prime lilt      291
Prime number theorem for compact Rwmaiiu surfaces      246
Prime number theorem in number theory      241
Prime number theorem with error terms      257
Primitive, closed curve      23
Primitive, closed geodcsic      228 291
Primitive, transformation      228
Projector      375
Puncture      112
Quasi isomctry      68
Quasiconformal mapping      153
Quaternion, algebra      52
Quaternion, model of hypcrbolic plane      52
Quotient graph      298
Range of operator      370
Rayleigh quotient      400
Resolvent      373
Resolvent equation      374
Resolvent set      373
Riemann space      156 161
Riemann space of 3-holcd sphere      67
Riemann surface of signature (g, n)      30
Riemann surface with cone-like singularities      159
Riemann surface, compact      30
Riemann surface, marked      139
Riemann zeta function      243
Rodclce problem      223
Root      402
Schwartz space      195 196
Schwartz space, modified      195
Selberg's zeta function      246
Semi group property      185 190
Sesquilinear form      370
Side      6
Side of polygon      34 429
Side of trigon      116
Sign conventions in figures      4
Signature      30 111 333
Signature of Fuchsian group      333
Simple, curve      19
Simple, loop      20
Simplicity of the length spectrum      85
Small eigenvalues      210
Smoothing operator      365
Spectrum of closed operator      373
Standard annulus      424
Stieltjes integral      244
Stretch      68 143
Strong isomorphism      298
Structure, conformal      29
Structure, hypcrbolic      7
Subsequent      34
Subsequent (sides and angles)      34
Sunada's theorem      291 295
Support      213
surface      5
Surface, hypcrbolic      7
Taubenan theorem      243
Tcichmtlllcr mapping      154
Teichmueller modular group      154
Teichmueller modular group of 3—holed sphere      67
Teichmueller space      139 383 384
Teichmueller space of 3-holed sphere      67
Teichmueller space, arbitrary signature      334
Teichmueller space, cell structure      144 334
Teichmueller space, real analytic structure      148
Tessellation      119
Thick and thin decomposition      96 108 109
Thick part      117
Topological diameter      415
Trace in quaternion algebra      53
Trace of kernel operator      227
Transform pair      252
Transplantation of closed geodesics      308
Transplantation of functions      305
Trigon      116
Triple trace theorem      56 57
Trirectangle      37
Trlangulation      116
Twist      143
Twist homeomorphism      72 77 143
Twist parameter      11 29 69 77
Twist parameter of X-piece      72
Type of edge      312
Type of edge in graph      298 299
Type of geodesic      305
Unique lifting property      17
Vector product      50
Vertex cycle      12
Vertex of boundary of surface      6
Vertex of graph      78
Volume element      363
von Mangoldt function      243
Von Neumann series      374
Wcyl’s asymptotic law      182 235
Weakly equivalent      269 291
Width of collar      70 95 117 343
Width of half-collar      66
Wlener-Ikehara theorem      243
Wolpcrt’s theorem      270
Word      178
Word in generators of a group      90
Word, cyclic      92
Word, reduced      92
X-piece      69
X-piece, immersion of      140
X-piece, marked      70
Y-piece      63
Y-piece, degenerate      109
Y-piece, marked      67
Y-piece, standard form      64
Z-V-C      166
Z-V-C parameters      169
Zeta function      183
Zeta function, Riemann      243
Zeta function, Selberg      246
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте