Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Deligne P., Etingof P., Freed D. — Quantum fields and strings: A course for mathematicians, Vol. 2 (pages 727-1501)
Deligne P., Etingof P., Freed D. — Quantum fields and strings: A course for mathematicians, Vol. 2 (pages 727-1501)



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Quantum fields and strings: A course for mathematicians, Vol. 2 (pages 727-1501)

Авторы: Deligne P., Etingof P., Freed D.

Аннотация:

Ideas from quantum field theory and string theory have had considerable impact on mathematics over the past 20 years. Advances in many different areas have been inspired by insights from physics. In 1996-97 the Institute for Advanced Study (Princeton, NJ) organized a special year-long program designed to teach mathematicians the basic physical ideas which underlie the mathematical applications. The purpose is eloquently stated in a letter written by Robert MacPherson: "The goal is to create and convey an understanding, in terms congenial to mathematicians, of some fundamental notions of physics ...[and to] develop the sort of intuition common among physicists for those who are used to thought processes stemming from geometry and algebra." These volumes are a written record of the program. They contain notes from several long and many short courses covering various aspects of quantum field theory and perturbative string theory. The courses were given by leading physicists and the notes were written either by the speakers or by mathematicians who participated in the program. The book also includes problems and solutions worked out by the editors and other leading participants. Interspersed are mathematical texts with background material and commentary on some topics covered in the lectures. These two volumes present the first truly comprehensive introduction to this field aimed at a mathematics audience. They offer a unique opportunity for mathematicians and mathematical physicists to learn about the beautiful and difficult subjects of quantum field theory and string theory.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1999

Количество страниц: 775

Добавлена в каталог: 05.01.2014

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Quantum field theory      526ff
Quark      29
R-charge      1487
R-symmetry      29 236 254 257 259 1296ff 1314 1382 1427 1432
Radial quantization      758
Ramond sector      29 745 918ff
Rarita — Schwinger field      29 155 920
Reflection positivity      690 705
Renormalization      30 429ff 784ff
Renormalization group      551ff 777ff 787 1163
Renormalization group, equation      30 563ff 573ff 578 703 1347
Renormalization group, flow      30 566ff 570 573ff 1442
Renormalization, finite      563ff
Renormalization, scheme (prescription)      440 566ff 897
Renormalized charge      534
Renormalized couplings      1183 1187
Renormalized field theory      435ff
Renormalized mass      531
RNS string      916ff 981ff
S-matrix      31 529 531 1175ff
Scalar field      192ff 438 539 621
SCALE      31 565ff
Scale invariant field theory      437
Scattering      31
Scattering, amplitude      462
Scattering, matrix      31 412 531ff see
Scattering, theory      31 405ff 461ff
Schwinger function      389ff
screening      575 1237
Seiberg — Witten equations      1388 1393ff
Semi-classical approximation      31
Sigma model      see "$\sigma$-model"
Smooth Deligne cohomology      see "Deligne cohomology"
Soliton      32 187 1247ff 1281ff
Spacetime      32 150 234
Spin-statistics theorem      32
Spinor      32 99ff 395
Spinor, field      195ff 223 621 1100
Standard model      439 1167
States      515ff 831
Stress-energy tensor      178ff 827 1153 1175
String theory      807ff 1064
Sugawara construction      1050
Super algebra      48ff
Super Brauer group      114ff
Super current      240 307 634
Super field      236ff 1284 1348ff
Super gravity      33 989ff 1013ff
Super Lie algebra      59
Super manifold      65ff 615ff
Super Minkowski space      23 231ff 243ff
Super Poincare group (algebra)      28 231ff 633 642 1110
Super potential      296 1428 1441
Super QCD      1434ff 1439ff
Super trace      54ff
Superrenormalizable field theory      436 439 1271
SUSY      34 41ff 91 930
Symmetry      165ff
Symmetry, breaking      34 450 1106 1125ff 1147ff 1342 1344 1345
Symmetry, breaking, chiral      1200 1340 1445
Symmetry, breaking, continuous      1133ff
Symmetry, breaking, global      1152 1448
Symmetry, gauge      189 1147ff
Symmetry, supersymmetry (SUSY)      34 41ff 227ff 981ff 1106ff 1281ff 1291ff 1426ff
Symplectic manifold      367ff
Tachyon      35 837 864
Theta function      795 889 973
Time ordering      394
Topological term      35 215ff 223 1200 see
Truncated Wightman functions      401
Twisted chiral superfield      259 333 1417
Twisting a theory      1317 1382ff
Type I superstring      935ff
Type II superstring      932ff
units of measurement      153
Unrenormalizable      436
UV (ultraviolet)      35 574 1332
UV (ultraviolet), fixed point      573 581
Vacuum, vacua      35 185
Vacuum, vacua, moduli space      see "Moduli space of vacua"
Variational 1-form      160ff
Vector, multiplet      313ff 321ff 331ff 337ff 347ff 642ff 1352ff
Verlinde formula      801
Vertex operators      765 818 838 962ff
Virasoro algebra      743 757ff 830ff 923 1043
Ward identities      36 750ff 793
Wavelength      36
Weinberg theorem      432
Weinberg theorem, strong      432 442
Wess — Zumino gauge      324
Wess — Zumino model      1427
Wess — Zumino term      217
Wess — Zumino — Witten (WZW) model      791ff
Weyl quantization      370 517
Weyl rescaling      855
Weyl spinor      32 929 1110
Wick formula      1204
Wick rotation      221ff 387 428 447 1381 1420
Wightman axioms      380 571
Wightman function      380ff 401 409 421 447 1134
Wilson line operator      1190 1215ff 1239 1258
Wilson loop      36 1215ff 1255 1433
Wilsonian effective action      1429
Wilsonian scheme      555ff
Worldline      37
Worldsheet      37
Yang — Mills theory      207ff 299ff 310ff 321ff 331ff 337ff 545ff 628 1263ff 1341ff 1351ff 1360ff 1379ff
Yukawa coupling      37 439
’t Hooft loop      35 1255ff
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте