Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ruelle D. — The mathematician's brain: A personal tour through the essentials of mathematics
Ruelle D. — The mathematician's brain: A personal tour through the essentials of mathematics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: The mathematician's brain: A personal tour through the essentials of mathematics

Автор: Ruelle D.

Аннотация:

The Mathematician's Brain poses a provocative question about the world's most brilliant yet eccentric mathematical minds: were they brilliant because of their eccentricities or in spite of them? In this thought-provoking and entertaining book, David Ruelle, the well-known mathematical physicist who helped create chaos theory, gives us a rare insider's account of the celebrated mathematicians he has known-their quirks, oddities, personal tragedies, bad behavior, descents into madness, tragic ends, and the sublime, inexpressible beauty of their most breathtaking mathematical discoveries.

Consider the case of British mathematician Alan Turing. Credited with cracking the German Enigma code during World War II and conceiving of the modern computer, he was convicted of "gross indecency" for a homosexual affair and died in 1954 after eating a cyanide-laced apple — his death was ruled a suicide, though rumors of assassination still linger. Ruelle holds nothing back in his revealing and deeply personal reflections on Turing and other fellow mathematicians, including Alexander Grothendieck, Ren? Thom, Bernhard Riemann, and Felix Klein. But this book is more than a mathematical tell-all. Each chapter examines an important mathematical idea and the visionary minds behind it. Ruelle meaningfully explores the philosophical issues raised by each, offering insights into the truly unique and creative ways mathematicians think and showing how the mathematical setting is most favorable for asking philosophical questions about meaning, beauty, and the nature of reality.

The Mathematician's Brain takes you inside the world — and heads — of mathematicians. It's a journey you won't soon forget.



Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2007

Количество страниц: 160

Добавлена в каталог: 29.12.2013

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
"nice" function      33
Academie des Sciences de Paris      61
Aesthetics      85—90 96
Affine      12
Affine geometry      12
AIM      108—109
Algebra      24 27 42
Algebraic geometry      25 28 29 31—32 36
Algebraic variety      31 33
Algorithm      65—66 150n3
Analogy      115 116—117
Analysis      24 26 29
Analytic function of a complex variable      68 74 142n2
Anti-Semitism      20 103
Archimedes      47 138n3
Aristotle      154n1
Arithmetic      23—24 32 36
ART      88
Asano      91 93
Autism      81
Axiom      8 25 27 73
Axiom of Choice (C)      63 69 143n5 143n6 144n7
Axiom of group      142nl(ch13)
Axiom of set theory      63—65 68—72 73
Axiom of topology      146n6
Axiom, ZFC      63—65 68—72 73
Banach      143n6
Banach — Tarski paradox      69 143n6
Beauty      127—130
Bezout's theorem      135n2(ch6)
Bohr      80 148n2
Boltzmann      121 123 154n6
Book of Nature      119
Book: The (Erdoes)      44 137n4;
Bourbaki      26—28 42 68 73 77
Bourbaki, seminaire      135n8
Bowen      125 126 155n10
Brain      46—51 53
Bruno      58 140n1(ch11)
Butterfly Theorem      18
Cantor      26 27 64 134n4
Cartan      26 34 35 135nl(ch7)
Category      43
Chaos      125
Chern      97 150nl(ch18)
Chevalley      26 35
Choice      see "Axiom of Choice (C)"
Church      66 141n7
Circle theorem      see "Lee—Yang circle theorem"
Cohen      144n7
Combinatorial thinking      86
Combinatorial use of computer      99
Compact set      75 147n6
Complex number      14 31 32 132n2 142n2
Complex projective      15
Complex projective geometry      15
Computer      46—51 53 76 87 98 115
Computer—aided proof      99—101
Concept      76
Conceptual mathematics      41 45
Conformism      59
Consciousness      85
Construction of mathematical theory      109 114
Contradiction      8
Corporatism      40
Courant      82 148n5
Crafoord Prize      137n11
Creation of      73—77
Cross-ratio      14—15
Culture      88—90 94 see mathematical)"
De Gennes      40 137n13
de la Vallee — Poussin      143n3
Dedekind      27
Deligne      28 97 134n7 137nll
Delsarte      26
Descartes      18 24 25 133nl
Dieudonne      26 36 136n7
Diophantine equation      70
Diophantine set      145n10
Diophantus      145n10
Dobrushin      125 126 155n8
Drug      80
Ecole Normale Superieure      26 36 40
Effectively computable function      66 141n7
Eilenberg      43 137n2
Einstein      86 88 119 120 154n2
Emergent behavior      120—123
Empty set      63
equation      25 30
Erdos      44 137n3
Ergodic theorem      89—90 150n7
Erlangen program      11 42 73
Euclid      7—8 23—24 47 65 73 132n3
Euclidean      11—12 25 53
Euclidean geometry      11—12 25 53
Euler      134n2(ch5)
Evolution      47 76 153n3(ch20)
Evolution of proteins      110—111
Fact      115
Fermat      32 135n3(ch6)
Fermat's last theorem      32 33 70 135n4(ch6)
Feynman      119 154n3
Field      31 33
Fields medal      34 60
figure      53—54
Finite simple group classification      70 101 144n9
Formal mathematics      41 45
Formalized mathematical text      9
Formula      55—56
Foundations      68—72
Four-color theorem      99
Fraction (number)      23 27
Fraenkel      63 140n2(ch12)
Freud      103—107 152n2
Function      41
Function, "nice"      33
Function, analytic, of a complex variable      68 74 142n2;
Function, effectively computable      66 141n7;
Function, recursive      141n7
Function, Riemann zeta      70 146n11
functor      43
Fundamental theorem of algebra      32 93 94 115 150n2(ch17)
Galileo      119
Geometrization      54
Geometry      5—9 11—20 42
Gibbs      121 123 154n6
Gibbs state      76 125
God      44 58—59 67 85 117 127
Godel      8 26 29 66 69 74 81 132n5 141n6
Godel's Incompleteness Theorem      64 66 67 78 83
Grothendieck      28 29 32—33 34—40 60 77 98 116 134n6 136n5 137n10 148n13
Group      42 73 89 116 141n1
Group, axioms of      142n1(ch13)
hadamard      85—88 95 135n1(ch7) 143n3
Hahn — Banach theorem      144n8
Hard sciences      106
Heisenberg      120 154n5
hilbert      8 26 29 73 82 132n4
Hilbert's tenth problem      70 145n10
Homosexuality      84
Honors      57—62
Hooking up of ideas      112
Hopf      97
Human mathematics      49—51 100
IDEA      16 20 41 45 93 109
Idealization of physical systems      121
Ideology      17 58
Imagination      57
Implicit function theorem      89
Infinite set      64
infinity      63—67
Institut des Hautes Etudes Scientifiques (IHES)      29 34 36—40
Integer (number)      23 27 32 33 64
Intelligence      115
Interval arithmetic      99
introspection      1
Intuition      117 118
Invention      85—90
Irrational number      78 148n1
Jacob      110—111 153n2(ch20)
Jaffe      98 101
Jost      154n4
K-theory      116
Kantorovich      112
Klein      11 16—17 82 132n1
Knowledge      3—4 7 118
Labyrinth      96
Landscape (intellectual, mathematical)      87 90 97 108—109 114 see
Lanford      100 125 126 151n8
Language      9 47 49—50 54—55 87 139n3
Lee      91 93
Lee — Yang circle theorem      91—94
Leibniz      24 134n3(ch5)
Leonardo da Vinci      104—107 130
Leray      35
Lindemann      148n1
Logic      71—72
Long proof      74 98 130
MacLane      43 137n2
MAP      see "Function"
Master-slave relation      79 81
Mathematica      115—116
Mathematical theory      75
Mathematical theory, construction of      109
Maximum Modulus Principle      146n5
Meaning      11 108 112 117—118
Measure theory      75 147n8
Memory      46 48—49 53 55—56
Metamathematics      71—72
Michel      37 38 57 136n8
Million-dollar prize      60
Mistake      50 100—102 113
Montel      34 135n1(ch7)
Morphism      43
Motchane      34 37 38 135n2(ch7)
MUSIC      127
Nature      119—122
Nervous breakdown      82
Neurosis      79 81
Newton      3—4 24 105 107 119 120 130 131n2(ch1)
Nobel prize      60
Nonverbal thinking      85
NP completeness      76
Number, complex      14 31 32 132n2 142n2
Number, fraction      23 27
Number, integer      23 27 32 33 64
Number, irrational      78 148n1
Number, prime      23 64—65 68 145n10
Number, real      23—24 27 31
Number, transcendental      148n1
Olver      83 149n9
Oppenheimer      34 135n3(ch7)
Order      42
Pappus's Theorem      16
Paradox, Banach — Tarski      69 143n6
Peano arithmetic (PA)      71
Phase transition      120 121
Physics      119—126
Planning      115
Plato      7 20 44 67 130 131n2(ch2)
Platonism      1 20 44—45 131n1(ch1)
Poincare      29 85—86 88 90 95 131n1(ch1) 135n1(ch6) 149n4
Poincare conjecture      98
Point at infinity      13 31
Polynomial      30 91
Power structure      58—59
Primality testing      151n3
Prime number      23 64—65 68 145n10
Prime number theorem      143n3
Problem Solver      44
Projective      13
Projective geometry      13
Psychology      85—90
Pythagoras      23 131n1(ch2)
Pythagorean Theorem      6—7 24 74
Quinn      98 101
Random choice      110
Real number      23—24 27 31 132n2
reality      2—4 44 45 52 102 116 117 121
Recursive function      141n7
Religion      117
Riemann      31 98 134n1
Riemann Hypothesis (RH)      68 70—71 134n1 146n11
Riemann zeta function      70 146n11
Ring      33
Rock climbing analogy      74—77
Rule of deduction      7—8
Russel      140n4
Russel paradox      140n4
Schapiro      106 152n2
Schrodinger      120 154n5
Schwartz      54
Scientific curiosity      104
Scientific method      1—2
Sentence      54—55
Serre      10 35 148 132n6
Set      27 41
Set theory      24 27
Set theory, axioms of      63—65 68—72 73
Set, empty      63
Set, infinite      64
Shelah      71
Shen      20
SIMPLE      142n1(ch13)
Simulated annealing      153n1(ch20)
Sinai      125 126 155n9
Smale      10 132n7
Society      57 59
Soft sciences      106—107
Space      15
Starvation      28 40 81
Statistical mechanics      76 91 123—125
Strategy of mathematical invention      108 113
Structural idea      115—116
Structure      8—9 11 20 41—15 68 73—77 94 96 124
Sublimation      105
Symbolic dynamics      125
Tarski      143n6
teaching      128
TeX      139n4
text      9—10 52—56 91 109
Theorem      7—8
Theorem, Bezout      135n2(ch6)
Theorem, butterfly      18;
Theorem, circle      91—94;
Theorem, ergodic      89—90 150n7;
Theorem, Fermat's last      32 33 70 135n4(ch6)
Theorem, finite simple group classification      70 101 144n9
Theorem, four-color      99;
Theorem, Fundamental, of Algebra      32 93 94 115 150n2(ch17)
Theorem, Godel's incompleteness      64 66 67 78 83
Theorem, Hahn — Banach      144n8
Theorem, implicit function      89
Theorem, Lee — Yang circle      91—94
Theorem, maximum modulus principle      146n5
Theorem, Pappus      16
Theorem, prime number      143n3
Theory builder      44
Thermodynamic behavior      123—124
Thom      34—35 37 38 60 79 135n7
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте