|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Prigogine I., Rice S.A. — Advances in CHEMICAL PHYSICS. Volume XC |
|
|
Ïðåäìåòíûé óêàçàòåëü |
Upstill, C. 223(185) 359
Uzer, t. 194(144) 358
Vacuum ultraviolet (VUV) radiation, molecules 60—62
Vacuum ultraviolet (VUV) radiation, molecules 57—60
Vacuum ultraviolet (VUV) radiation, nitric oxide analysis 3—4
Vacuum ultraviolet (VUV) radiation, nitric oxide analysis, single-photon ionization 43—45
Vacuum ultraviolet (VUV) radiation, nitrogen dioxide, three-color triple-resonant threshold photoionization 71—72
Vacuum ultraviolet (VUV) radiation, OH compounds 45—48
Vacuum ultraviolet (VUV) radiation, origins of ZEKE and 10—11
Vaienti, S. 173—174(126) 357
Van Craen 112(31) 353
van der Velt, T. 112(34) 219(34) 268—269(34) 324—325(34) 348(34) 354
Van der Waals molecule, matrix Hamiltonians 247
Van der Waerden, B.L. 108(9) 111(9) 352
van Ede van der Pals, P. 344(283) 363
van Houten, H. 113(40) 161(40) 337—338(40) 349(40) 354
Van Vleck contact transformation, equilibrium-point quantization 192—194
Van Vleck contact transformation, h-expansion and anharmonicity 348—349
Van Vleck contact transformation, matrix Hamiltonians, diagonal matrices 250—252
Van Vleck contact transformation, molecular transition state, large molecule bending and extension 317—319
Van Vleck contact transformation, molecular transition state, rotational motion 320—321
Van Vleck contact transformation, periodic-orbit vs. equilibrium point quantization 346
Van Vleck contact transformation, semiclassical regimes 110
Van Vleck — Morette matrix, semiclassical quantization, Jacobi — Hill equation 130—131
Van Vleck — Morette matrix, semiclassical quantization, short-wavelength asymptotics 127—129
van Vleck, J.H. 119(60) 128(76) 355
Vander Auwera, J. 112(31) 353
Vassen, W. 112(34) 219(34) 268—269(34) 324—325(34) 348(34) 354
Vattay, G. 206(160) 347(287) 358 363
Vector potential, matrix Hamiltonians 252—253
Vetterling, V.T. 304(245) 360
Vibrational relaxation, nitrogen dioxide 80—83
Vibrationally resolved structures, para-dibluorobenzene cation (p-DFB) 83—88
Vibrationally resolved structures, para-dibluorobenzene cation (p-DFB), state 84
Vibrationally resolved structures, para-dibluorobenzene cation (p-DFB), state 84—87
Vibrationally resolved structures, para-dibluorobenzene cation (p-DFB), self-consistent ab initio computations 87—88
Vibrationally resolved structures, para-dibluorobenzene cation (p-DFB), ZEKE spectra 84
Vibrationally resolved structures, phenol-water cation 88—94
Vibrationally resolved structures, phenol-water cation, ab initio comparisons 92—94
Vibrationally resolved structures, ZEKE spectra 89—92
Vibronic symmetry species, rotationally resolved ZEKE spectra 28—29
Vilesov, F.I. 10—11(67) 100
Visvanathan, K.S. 6(59) 86(59) 94(59) 99
Viswanathan, K.S. 10(74—75) 30(75 104) 100—101
Vivaldi, F. 152(94) 356
von Klitzing, K. 340(279) 363
von Neumann, J. 259(207) 360
von Niessen, W. 26(101) 28(101) 83(160) 84(162) 101 103
Voros, A. 108(6) 159(104) 176(129) 178(130) 187(129) 195(130) 203(154) 219(104) 352 356—358
Voth, G.A. 114(50) 354
Wallenstein, R. 32(120) 102
Waller, I.M. 3(14—15) 69(15) 98
Walters, P. 167(119) 174(119) 207(119) 357
Wang, K. 3(32 44) 30—33(112—113 116—118) 35—37(116) 40(116 118) 42(117) 43—46(129—130) 47(130) 48(132) 49(116 132) 50(132) 51(116 132—133) 52(132—133) 54(135) 55—57(32 44 136 139) 58—61(139) 63(141) 69(141) 99 101—102
Wang, X. 290(225) 360
Wannier symmetric stretching motion 326—327
Watanabe, K. 286—287(220) 289(220) 360
Water molecules, single-photon ionization 54—57
Watson form, rotational-vibrational Hamiltonian 271—272
Watson, J.K.G. 112(31) 271(211) 353 360
Wave equations, quantum billiards 227—228
Wave functions, (n + 1') REMPI process 33—35
Wave functions, Born — Oppenheimer Hamiltonian 270—271
Wave functions, short-wavelength asymptotics 125—127
Wave functions, vs. semiclassical quantization 114
Wavepacket propagation, molecular transition state 310—313
Weber, T. 20(92) 23—24(92) 27(92) 101
Weidenmuller, H.A. 113(45) 114(48) 196(147) 227(48) 269(147) 337(45 48) 349(45) 354 358
Weigert, S. 247(198—199) 248(199) 360
Weimann, G. 340(279) 363
Weinhold, F. 88(167) 103
Weiss, D. 340(279) 363
Weisshaar, J.C. 3(27) 88(167) 99 103
Welch, G.R. 112(33) 269(33) 324(33) 354
Welge, K.H. 112(34) 219(34) 268—269(34) 324—325(34) 348(34) 354
Wentzel, G. 112(28) 353
Werme, L.O. 10(69) 100
Westervelt, R.M. 113(41) 161(41) 227(41) 337—338(41) 349(41) 354
Westwood, N.P.C. 30(111—112) 101
Weyl — Wigner representation, equilibrium-point quantization 191
Weyl — Wigner representation, matrix Hamiltonians 247
Weyl — Wigner representation, periodic-orbit quantization 196—197
Weyl — Wigner representation, semiclassical quantization 123—124
Weyl — Wigner representation, semiclassical quantization, limits and 349—351
Weyl — Wigner representation, semiclassical quantization, short-time behavior 178
Weyl, H. 123(67) 178(67) 355
Wharton, L. 112(32) 353
Whetten, R.L. 25(100) 71(151) 101 103 259(208) 262(208) 360
White, M.G. 3(13 20 30—32) 16(20) 17(13) 19(89) 30(13 20 114 140) 43—46(129—130) 47(30 130 140) 48—49(140) 54(31) 55—57(32 139) 58—59(139) 61(139—140) 62(140) 63(30 140) 80(30 140) 98—99 101—102
Widmer, R. 20(91) 101
Wiebusch, G. 112(34) 219(34) 268—269(34) 324—325(34) 348(34) 354
Wiedmann, R.T. 3(30—32) 19(89) 43—46(129—130) 47(30 130 140) 48—49(140) 54(31) 55—57(32) 58—59(139) 60(89 139) 61—63(30 139—140) 80(30 140) 99 101—102
Wiggins, S. 153(95) 170(95) 356
Wigner repulsion, semiclassical limits and 349—351
Wigner spacing distribution 343—344
Wigner transform, quantum observables 224—226
Wigner, E.P. 112(29) 121—122(64) 123(29) 178(29 64) 259(207) 292(231) 322(251) 353 355 360 362
Wilczek, F. 252(202) 261(202) 360
Wilkerson, C.W. 87(164) 103
Wilkinson, M. 228—229(191) 359
Willetts, A. 192(137) 357
| Williams, T.A. 21(94) 84(94) 101
Wilson, D.J. 11(80) 100
Wilson, W.G. 10(74) 100
Winniczek, J.W. 3(13) 17(13) 30(13) 98
Wintgen, D. 109(18) 111(23) 149(92) 156(99—100) 169(99—100) 200(92) 206(159) 210(167—168) 226(189) 268(18 23 100) 325(18 23 99—100) 326(99—100 259) 327—328(23 99—100 259—260) 331(99) 340(274) 353 356 358—359 362
Wirzba, A. 243(195) 246(195) 347(287) 360 363
WKB conditions, matrix Hamiltonians 262—265
WKB conditions, periodic-orbit quantization 204—205 213—218
Wong, S.S.M. 241(194) 322(194) 360
Woste, L. 259(208) 262(208) 360
Wright, T.G. 6(61) 85—86(61) 89(172) 91(177—179) 100 103—104
Wunner, G. 113(44) 349(44) 354
X-ray photoelectron spectroscopy (XPS), origins of ZEKE and 10—11
Xie, J. 30(148) 36—37(124) 40(124) 49(124) 51(124 148) 69(148) 102—103
Xie, Y. 69(149) 103
Yoshiuchi, H. 89(171) 90(171) 103
Young, J.W. 114(49) 354
Zacharias, H. 32(120) 102
Zachariasen, F. 123—124(69) 178(69) 275(69) 355
Zare, R.N. 3(46) 10(46 77) 15(46) 30(77 103 148) 35(123) 36—37(124) 40(124) 49(124) 51(124 148) 69(148 150) 99—103
Zee configuration, hydrogen negative ion () 328—329
ZEKE electrons, characteristics of 12
ZEKE-PFI spectroscopy, defined 15—16
ZEKE-PFI spectroscopy, highest resolution experiments 16—19
Zener, C. 247(201) 251(201) 348(201) 360
Zero length paths, periodic-orbit quantization 195—197
Zero-kinetic-energy (ZEKE) photoelectron techniques, (n + 1') REMPI for asymmetric tops 37—41
Zero-kinetic-energy (ZEKE) photoelectron techniques, (n + 1') REMPI for asymmetric tops, parity selection rules 40—41
Zero-kinetic-energy (ZEKE) photoelectron techniques, (n + 1') REMPI for asymmetric tops, photoelectron matrix element 40
Zero-kinetic-energy (ZEKE) photoelectron techniques, (n + 1') REMPI for asymmetric tops, rotationally resolved PE spectra 37—39
Zero-kinetic-energy (ZEKE) photoelectron techniques, (n + 1') REMPI for linear molecules 31—37
Zero-kinetic-energy (ZEKE) photoelectron techniques, (n + 1') REMPI for linear molecules, parity selection rules 36—37
Zero-kinetic-energy (ZEKE) photoelectron techniques, (n + 1') REMPI for linear molecules, photoelectron matrix element 35—36
Zero-kinetic-energy (ZEKE) photoelectron techniques, (n + 1') REMPI for linear molecules, rotationally resolved PE spectra 31—35
Zero-kinetic-energy (ZEKE) photoelectron techniques, (n + 1') REMPI for symmetric tops 41—42
Zero-kinetic-energy (ZEKE) photoelectron techniques, computational procedures 42—43
Zero-kinetic-energy (ZEKE) photoelectron techniques, delayed pulsed-field ionization of Rydberg states 13—16
Zero-kinetic-energy (ZEKE) photoelectron techniques, detection principles 11—13
Zero-kinetic-energy (ZEKE) photoelectron techniques, deviations from direct ionization predictions 62—70
Zero-kinetic-energy (ZEKE) photoelectron techniques, evolution of photoionization experiments 10—11
Zero-kinetic-energy (ZEKE) photoelectron techniques, future applications 94—97
Zero-kinetic-energy (ZEKE) photoelectron techniques, highest resolution experiments 16—19
Zero-kinetic-energy (ZEKE) photoelectron techniques, linear molecule results 43—54
Zero-kinetic-energy (ZEKE) photoelectron techniques, linear molecule results, (2 + 1) REMPI of HBr 51—53
Zero-kinetic-energy (ZEKE) photoelectron techniques, linear molecule results, (2 + 1) REMPI of OH 53—54
Zero-kinetic-energy (ZEKE) photoelectron techniques, linear molecule results, single-photon ionization of CO and 48—51
Zero-kinetic-energy (ZEKE) photoelectron techniques, linear molecule results, single-photon ionization of nitric oxide 43—45
Zero-kinetic-energy (ZEKE) photoelectron techniques, linear molecule results, single-photon ionization of OH 45—48
Zero-kinetic-energy (ZEKE) photoelectron techniques, nonlinear molecule results 54—62
Zero-kinetic-energy (ZEKE) photoelectron techniques, nonlinear molecule results, single-photon ionization of 60—62
Zero-kinetic-energy (ZEKE) photoelectron techniques, nonlinear molecule results, single-photon ionization of 57—60
Zero-kinetic-energy (ZEKE) photoelectron techniques, nonlinear molecule results, single-photon ionization of water 54—57
Zero-kinetic-energy (ZEKE) photoelectron techniques, overview 3—10
Zero-kinetic-energy (ZEKE) photoelectron techniques, para-difluorobenzene cation (p-DFB), self-consistent field ab initio computations 87—88
Zero-kinetic-energy (ZEKE) photoelectron techniques, para-difluorobenzene cation (p-DFB), self-consistent field ab initio computations, state 84
Zero-kinetic-energy (ZEKE) photoelectron techniques, para-difluorobenzene cation (p-DFB), self-consistent field ab initio computations, state 84—87
Zero-kinetic-energy (ZEKE) photoelectron techniques, para-difluorobenzene cation (p-DFB), self-consistent field ab initio computations, vibrationally resolved structure 83—88
Zero-kinetic-energy (ZEKE) photoelectron techniques, phenol-water cations 89—92
Zero-kinetic-energy (ZEKE) photoelectron techniques, phenol-water cations, comparison with ab initio results 92—94
Zero-kinetic-energy (ZEKE) photoelectron techniques, phenol-water cations, intermolecular vibrations 91—92
Zero-kinetic-energy (ZEKE) photoelectron techniques, phenol-water cations, ionization energy 90—91
Zero-kinetic-energy (ZEKE) photoelectron techniques, phenol-water cations, vibrationally resolved structure 88—94
Zero-kinetic-energy (ZEKE) photoelectron techniques, resolution properties of 3
Zero-kinetic-energy (ZEKE) photoelectron techniques, rotationally resolved spectra 19—29
Zero-kinetic-energy (ZEKE) photoelectron techniques, rotationally resolved spectra, benezene 19—29
Zero-kinetic-energy (ZEKE) photoelectron techniques, rotationally resolved spectra, nitric oxide 19
Zero-kinetic-energy (ZEKE) photoelectron techniques, spin-orbit relaxation and rotational coupling, HCl/DCl photoionization 64—70
Zero-kinetic-energy (ZEKE) photoelectron techniques, spin-orbit relaxation and rotational coupling, rotational line intensities 64—69
Zero-kinetic-energy (ZEKE) photoelectron techniques, spin-orbit relaxation and rotational coupling, transition of HCl + spin-orbit substates 69—70
Zero-kinetic-energy (ZEKE) photoelectron techniques, theory and formulation 30—43
Zero-kinetic-energy (ZEKE) photoelectron techniques, three-color triple-resonant threshold, electronic structure and photoselection 71—72
Zero-kinetic-energy (ZEKE) photoelectron techniques, three-color triple-resonant threshold, photoionization of nitrogen dioxide 70—83
Zero-kinetic-energy (ZEKE) photoelectron techniques, three-color triple-resonant threshold, state-to-state effects and vibrational structure 72—80
Zero-kinetic-energy (ZEKE) photoelectron techniques, three-color triple-resonant threshold, vibrational relaxation and threshold intensity 80—83
Zero-kinetic-energy (ZEKE) photoelectron techniques, two-color ionization 16—17
Zero-kinetic-energy (ZEKE) photoelectron techniques, vs. photoionization efficienty (PIE) measurements 6
Zeta functions, Gutzwiller trace formula and 341—344
Zeta functions, hydrogen negative ion () 333—337
Zeta functions, matrix Hamiltonians 252—253
Zeta functions, molecular transition state 319
Zeta functions, periodic-orbit quantization, 1F system tunneling 217—218
Zeta functions, periodic-orbit quantization, approximation 206—209
Zeta functions, periodic-orbit quantization, bounded systems 209—210
Zeta functions, periodic-orbit quantization, convergence and topological pressure 205—206
Zeta functions, periodic-orbit quantization, h-corrections 211
Zeta functions, periodic-orbit quantization, level density and staircase function 201—202
Zeta functions, periodic-orbit quantization, Selberg and Ruelle Zeta functions 202—205
Zeta functions, quantum billiards, periodic orbits 237—238
Zeta functions, quantum observables, diagonal matrix elements 224—226
Zeta functions, scattering resonances, chemical reaction dynamics 344—345
Zewail, A.H. 113(39) 258(206) 279(215) 292—294(232—234) 311(232—234) 313(232—234) 344(39) 354 360
Zhang, X. 3(22 35) 15(35) 63(35) 94—95(22) 98—99
Zhao, M. 345(285) 363
Zhu, L. 3(40—41) 26(41) 95(41) 99
Zhu, Y.-F. 63(141a) 65—68(141b) 69(141a) 102
Ziman, J.M. 310(244) 360
Zimmerman, M.L. 112(33) 269(33) 324(33) 354
Zinn-Justin, J. 108(6) 352
Zwanzig, R. 161(109) 357
Zwanziger, J.W. 259(208) 262(208) 360
Zweifel, P.F. 123(67) 178(67) 355
Zwerger, W. 114(50) 354
|
|
|
Ðåêëàìà |
|
|
|