Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Prigogine I., Rice S.A. — Advances in CHEMICAL PHYSICS. Volume XC
Prigogine I., Rice S.A. — Advances in CHEMICAL PHYSICS. Volume XC



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Advances in CHEMICAL PHYSICS. Volume XC

Àâòîðû: Prigogine I., Rice S.A.

Àííîòàöèÿ:

This series is devoted to a wide variety of developments in the field of chemical physics. It features comprehensive analyses of subjects of interest, in the hopes of both educating the novice and stimulating further research.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1995

Êîëè÷åñòâî ñòðàíèö: 404

Äîáàâëåíà â êàòàëîã: 05.12.2013

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Upstill, C.      223(185) 359
Uzer, t.      194(144) 358
Vacuum ultraviolet (VUV) radiation, $CH_{3}$ molecules      60—62
Vacuum ultraviolet (VUV) radiation, $H_{2}CO$ molecules      57—60
Vacuum ultraviolet (VUV) radiation, nitric oxide analysis      3—4
Vacuum ultraviolet (VUV) radiation, nitric oxide analysis, single-photon ionization      43—45
Vacuum ultraviolet (VUV) radiation, nitrogen dioxide, three-color triple-resonant threshold photoionization      71—72
Vacuum ultraviolet (VUV) radiation, OH compounds      45—48
Vacuum ultraviolet (VUV) radiation, origins of ZEKE and      10—11
Vaienti, S.      173—174(126) 357
Van Craen      112(31) 353
van der Velt, T.      112(34) 219(34) 268—269(34) 324—325(34) 348(34) 354
Van der Waals molecule, matrix Hamiltonians      247
Van der Waerden, B.L.      108(9) 111(9) 352
van Ede van der Pals, P.      344(283) 363
van Houten, H.      113(40) 161(40) 337—338(40) 349(40) 354
Van Vleck contact transformation, equilibrium-point quantization      192—194
Van Vleck contact transformation, h-expansion and anharmonicity      348—349
Van Vleck contact transformation, matrix Hamiltonians, diagonal matrices      250—252
Van Vleck contact transformation, molecular transition state, large molecule bending and extension      317—319
Van Vleck contact transformation, molecular transition state, rotational motion      320—321
Van Vleck contact transformation, periodic-orbit vs. equilibrium point quantization      346
Van Vleck contact transformation, semiclassical regimes      110
Van Vleck — Morette matrix, semiclassical quantization, Jacobi — Hill equation      130—131
Van Vleck — Morette matrix, semiclassical quantization, short-wavelength asymptotics      127—129
van Vleck, J.H.      119(60) 128(76) 355
Vander Auwera, J.      112(31) 353
Vassen, W.      112(34) 219(34) 268—269(34) 324—325(34) 348(34) 354
Vattay, G.      206(160) 347(287) 358 363
Vector potential, matrix Hamiltonians      252—253
Vetterling, V.T.      304(245) 360
Vibrational relaxation, nitrogen dioxide      80—83
Vibrationally resolved structures, para-dibluorobenzene cation (p-DFB)      83—88
Vibrationally resolved structures, para-dibluorobenzene cation (p-DFB), $S_{1}0^{0}$ state      84
Vibrationally resolved structures, para-dibluorobenzene cation (p-DFB), $S_{1}6^{1}$ state      84—87
Vibrationally resolved structures, para-dibluorobenzene cation (p-DFB), self-consistent ab initio computations      87—88
Vibrationally resolved structures, para-dibluorobenzene cation (p-DFB), ZEKE spectra      84
Vibrationally resolved structures, phenol-water cation      88—94
Vibrationally resolved structures, phenol-water cation, ab initio comparisons      92—94
Vibrationally resolved structures, ZEKE spectra      89—92
Vibronic symmetry species, rotationally resolved ZEKE spectra      28—29
Vilesov, F.I.      10—11(67) 100
Visvanathan, K.S.      6(59) 86(59) 94(59) 99
Viswanathan, K.S.      10(74—75) 30(75 104) 100—101
Vivaldi, F.      152(94) 356
von Klitzing, K.      340(279) 363
von Neumann, J.      259(207) 360
von Niessen, W.      26(101) 28(101) 83(160) 84(162) 101 103
Voros, A.      108(6) 159(104) 176(129) 178(130) 187(129) 195(130) 203(154) 219(104) 352 356—358
Voth, G.A.      114(50) 354
Wallenstein, R.      32(120) 102
Waller, I.M.      3(14—15) 69(15) 98
Walters, P.      167(119) 174(119) 207(119) 357
Wang, K.      3(32 44) 30—33(112—113 116—118) 35—37(116) 40(116 118) 42(117) 43—46(129—130) 47(130) 48(132) 49(116 132) 50(132) 51(116 132—133) 52(132—133) 54(135) 55—57(32 44 136 139) 58—61(139) 63(141) 69(141) 99 101—102
Wang, X.      290(225) 360
Wannier symmetric stretching motion      326—327
Watanabe, K.      286—287(220) 289(220) 360
Water molecules, single-photon ionization      54—57
Watson form, rotational-vibrational Hamiltonian      271—272
Watson, J.K.G.      112(31) 271(211) 353 360
Wave equations, quantum billiards      227—228
Wave functions, (n + 1') REMPI process      33—35
Wave functions, Born — Oppenheimer Hamiltonian      270—271
Wave functions, short-wavelength asymptotics      125—127
Wave functions, vs. semiclassical quantization      114
Wavepacket propagation, molecular transition state      310—313
Weber, T.      20(92) 23—24(92) 27(92) 101
Weidenmuller, H.A.      113(45) 114(48) 196(147) 227(48) 269(147) 337(45 48) 349(45) 354 358
Weigert, S.      247(198—199) 248(199) 360
Weimann, G.      340(279) 363
Weinhold, F.      88(167) 103
Weiss, D.      340(279) 363
Weisshaar, J.C.      3(27) 88(167) 99 103
Welch, G.R.      112(33) 269(33) 324(33) 354
Welge, K.H.      112(34) 219(34) 268—269(34) 324—325(34) 348(34) 354
Wentzel, G.      112(28) 353
Werme, L.O.      10(69) 100
Westervelt, R.M.      113(41) 161(41) 227(41) 337—338(41) 349(41) 354
Westwood, N.P.C.      30(111—112) 101
Weyl — Wigner representation, equilibrium-point quantization      191
Weyl — Wigner representation, matrix Hamiltonians      247
Weyl — Wigner representation, periodic-orbit quantization      196—197
Weyl — Wigner representation, semiclassical quantization      123—124
Weyl — Wigner representation, semiclassical quantization, limits and      349—351
Weyl — Wigner representation, semiclassical quantization, short-time behavior      178
Weyl, H.      123(67) 178(67) 355
Wharton, L.      112(32) 353
Whetten, R.L.      25(100) 71(151) 101 103 259(208) 262(208) 360
White, M.G.      3(13 20 30—32) 16(20) 17(13) 19(89) 30(13 20 114 140) 43—46(129—130) 47(30 130 140) 48—49(140) 54(31) 55—57(32 139) 58—59(139) 61(139—140) 62(140) 63(30 140) 80(30 140) 98—99 101—102
Widmer, R.      20(91) 101
Wiebusch, G.      112(34) 219(34) 268—269(34) 324—325(34) 348(34) 354
Wiedmann, R.T.      3(30—32) 19(89) 43—46(129—130) 47(30 130 140) 48—49(140) 54(31) 55—57(32) 58—59(139) 60(89 139) 61—63(30 139—140) 80(30 140) 99 101—102
Wiggins, S.      153(95) 170(95) 356
Wigner repulsion, semiclassical limits and      349—351
Wigner spacing distribution      343—344
Wigner transform, quantum observables      224—226
Wigner, E.P.      112(29) 121—122(64) 123(29) 178(29 64) 259(207) 292(231) 322(251) 353 355 360 362
Wilczek, F.      252(202) 261(202) 360
Wilkerson, C.W.      87(164) 103
Wilkinson, M.      228—229(191) 359
Willetts, A.      192(137) 357
Williams, T.A.      21(94) 84(94) 101
Wilson, D.J.      11(80) 100
Wilson, W.G.      10(74) 100
Winniczek, J.W.      3(13) 17(13) 30(13) 98
Wintgen, D.      109(18) 111(23) 149(92) 156(99—100) 169(99—100) 200(92) 206(159) 210(167—168) 226(189) 268(18 23 100) 325(18 23 99—100) 326(99—100 259) 327—328(23 99—100 259—260) 331(99) 340(274) 353 356 358—359 362
Wirzba, A.      243(195) 246(195) 347(287) 360 363
WKB conditions, matrix Hamiltonians      262—265
WKB conditions, periodic-orbit quantization      204—205 213—218
Wong, S.S.M.      241(194) 322(194) 360
Woste, L.      259(208) 262(208) 360
Wright, T.G.      6(61) 85—86(61) 89(172) 91(177—179) 100 103—104
Wunner, G.      113(44) 349(44) 354
X-ray photoelectron spectroscopy (XPS), origins of ZEKE and      10—11
Xie, J.      30(148) 36—37(124) 40(124) 49(124) 51(124 148) 69(148) 102—103
Xie, Y.      69(149) 103
Yoshiuchi, H.      89(171) 90(171) 103
Young, J.W.      114(49) 354
Zacharias, H.      32(120) 102
Zachariasen, F.      123—124(69) 178(69) 275(69) 355
Zare, R.N.      3(46) 10(46 77) 15(46) 30(77 103 148) 35(123) 36—37(124) 40(124) 49(124) 51(124 148) 69(148 150) 99—103
Zee configuration, hydrogen negative ion ($H^{-}$)      328—329
ZEKE electrons, characteristics of      12
ZEKE-PFI spectroscopy, defined      15—16
ZEKE-PFI spectroscopy, highest resolution experiments      16—19
Zener, C.      247(201) 251(201) 348(201) 360
Zero length paths, periodic-orbit quantization      195—197
Zero-kinetic-energy (ZEKE) photoelectron techniques, (n + 1') REMPI for asymmetric tops      37—41
Zero-kinetic-energy (ZEKE) photoelectron techniques, (n + 1') REMPI for asymmetric tops, parity selection rules      40—41
Zero-kinetic-energy (ZEKE) photoelectron techniques, (n + 1') REMPI for asymmetric tops, photoelectron matrix element      40
Zero-kinetic-energy (ZEKE) photoelectron techniques, (n + 1') REMPI for asymmetric tops, rotationally resolved PE spectra      37—39
Zero-kinetic-energy (ZEKE) photoelectron techniques, (n + 1') REMPI for linear molecules      31—37
Zero-kinetic-energy (ZEKE) photoelectron techniques, (n + 1') REMPI for linear molecules, parity selection rules      36—37
Zero-kinetic-energy (ZEKE) photoelectron techniques, (n + 1') REMPI for linear molecules, photoelectron matrix element      35—36
Zero-kinetic-energy (ZEKE) photoelectron techniques, (n + 1') REMPI for linear molecules, rotationally resolved PE spectra      31—35
Zero-kinetic-energy (ZEKE) photoelectron techniques, (n + 1') REMPI for symmetric tops      41—42
Zero-kinetic-energy (ZEKE) photoelectron techniques, computational procedures      42—43
Zero-kinetic-energy (ZEKE) photoelectron techniques, delayed pulsed-field ionization of Rydberg states      13—16
Zero-kinetic-energy (ZEKE) photoelectron techniques, detection principles      11—13
Zero-kinetic-energy (ZEKE) photoelectron techniques, deviations from direct ionization predictions      62—70
Zero-kinetic-energy (ZEKE) photoelectron techniques, evolution of photoionization experiments      10—11
Zero-kinetic-energy (ZEKE) photoelectron techniques, future applications      94—97
Zero-kinetic-energy (ZEKE) photoelectron techniques, highest resolution experiments      16—19
Zero-kinetic-energy (ZEKE) photoelectron techniques, linear molecule results      43—54
Zero-kinetic-energy (ZEKE) photoelectron techniques, linear molecule results, (2 + 1) REMPI of HBr      51—53
Zero-kinetic-energy (ZEKE) photoelectron techniques, linear molecule results, (2 + 1) REMPI of OH      53—54
Zero-kinetic-energy (ZEKE) photoelectron techniques, linear molecule results, single-photon ionization of CO and $N_{2}$      48—51
Zero-kinetic-energy (ZEKE) photoelectron techniques, linear molecule results, single-photon ionization of nitric oxide      43—45
Zero-kinetic-energy (ZEKE) photoelectron techniques, linear molecule results, single-photon ionization of OH      45—48
Zero-kinetic-energy (ZEKE) photoelectron techniques, nonlinear molecule results      54—62
Zero-kinetic-energy (ZEKE) photoelectron techniques, nonlinear molecule results, single-photon ionization of $CH_{3}$      60—62
Zero-kinetic-energy (ZEKE) photoelectron techniques, nonlinear molecule results, single-photon ionization of $H_{2}Cl$      57—60
Zero-kinetic-energy (ZEKE) photoelectron techniques, nonlinear molecule results, single-photon ionization of water      54—57
Zero-kinetic-energy (ZEKE) photoelectron techniques, overview      3—10
Zero-kinetic-energy (ZEKE) photoelectron techniques, para-difluorobenzene cation (p-DFB), self-consistent field ab initio computations      87—88
Zero-kinetic-energy (ZEKE) photoelectron techniques, para-difluorobenzene cation (p-DFB), self-consistent field ab initio computations, $S_{1}0^{0}$ state      84
Zero-kinetic-energy (ZEKE) photoelectron techniques, para-difluorobenzene cation (p-DFB), self-consistent field ab initio computations, $S_{1}6^{1}$ state      84—87
Zero-kinetic-energy (ZEKE) photoelectron techniques, para-difluorobenzene cation (p-DFB), self-consistent field ab initio computations, vibrationally resolved structure      83—88
Zero-kinetic-energy (ZEKE) photoelectron techniques, phenol-water cations      89—92
Zero-kinetic-energy (ZEKE) photoelectron techniques, phenol-water cations, comparison with ab initio results      92—94
Zero-kinetic-energy (ZEKE) photoelectron techniques, phenol-water cations, intermolecular vibrations      91—92
Zero-kinetic-energy (ZEKE) photoelectron techniques, phenol-water cations, ionization energy      90—91
Zero-kinetic-energy (ZEKE) photoelectron techniques, phenol-water cations, vibrationally resolved structure      88—94
Zero-kinetic-energy (ZEKE) photoelectron techniques, resolution properties of      3
Zero-kinetic-energy (ZEKE) photoelectron techniques, rotationally resolved spectra      19—29
Zero-kinetic-energy (ZEKE) photoelectron techniques, rotationally resolved spectra, benezene      19—29
Zero-kinetic-energy (ZEKE) photoelectron techniques, rotationally resolved spectra, nitric oxide      19
Zero-kinetic-energy (ZEKE) photoelectron techniques, spin-orbit relaxation and rotational coupling, HCl/DCl photoionization      64—70
Zero-kinetic-energy (ZEKE) photoelectron techniques, spin-orbit relaxation and rotational coupling, rotational line intensities      64—69
Zero-kinetic-energy (ZEKE) photoelectron techniques, spin-orbit relaxation and rotational coupling, transition of HCl + spin-orbit substates      69—70
Zero-kinetic-energy (ZEKE) photoelectron techniques, theory and formulation      30—43
Zero-kinetic-energy (ZEKE) photoelectron techniques, three-color triple-resonant threshold, electronic structure and photoselection      71—72
Zero-kinetic-energy (ZEKE) photoelectron techniques, three-color triple-resonant threshold, photoionization of nitrogen dioxide      70—83
Zero-kinetic-energy (ZEKE) photoelectron techniques, three-color triple-resonant threshold, state-to-state effects and vibrational structure      72—80
Zero-kinetic-energy (ZEKE) photoelectron techniques, three-color triple-resonant threshold, vibrational relaxation and threshold intensity      80—83
Zero-kinetic-energy (ZEKE) photoelectron techniques, two-color ionization      16—17
Zero-kinetic-energy (ZEKE) photoelectron techniques, vs. photoionization efficienty (PIE) measurements      6
Zeta functions, Gutzwiller trace formula and      341—344
Zeta functions, hydrogen negative ion ($H^{-}$)      333—337
Zeta functions, matrix Hamiltonians      252—253
Zeta functions, molecular transition state      319
Zeta functions, periodic-orbit quantization, 1F system tunneling      217—218
Zeta functions, periodic-orbit quantization, approximation      206—209
Zeta functions, periodic-orbit quantization, bounded systems      209—210
Zeta functions, periodic-orbit quantization, convergence and topological pressure      205—206
Zeta functions, periodic-orbit quantization, h-corrections      211
Zeta functions, periodic-orbit quantization, level density and staircase function      201—202
Zeta functions, periodic-orbit quantization, Selberg and Ruelle Zeta functions      202—205
Zeta functions, quantum billiards, periodic orbits      237—238
Zeta functions, quantum observables, diagonal matrix elements      224—226
Zeta functions, scattering resonances, chemical reaction dynamics      344—345
Zewail, A.H.      113(39) 258(206) 279(215) 292—294(232—234) 311(232—234) 313(232—234) 344(39) 354 360
Zhang, X.      3(22 35) 15(35) 63(35) 94—95(22) 98—99
Zhao, M.      345(285) 363
Zhu, L.      3(40—41) 26(41) 95(41) 99
Zhu, Y.-F.      63(141a) 65—68(141b) 69(141a) 102
Ziman, J.M.      310(244) 360
Zimmerman, M.L.      112(33) 269(33) 324(33) 354
Zinn-Justin, J.      108(6) 352
Zwanzig, R.      161(109) 357
Zwanziger, J.W.      259(208) 262(208) 360
Zweifel, P.F.      123(67) 178(67) 355
Zwerger, W.      114(50) 354
1 2 3 4 5 6 7
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå