Авторизация
Поиск по указателям
Behnke H., Bachmann F., Fladt K. — Fundamentals of mathematics. Volume III. Analysis
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Fundamentals of mathematics. Volume III. Analysis
Авторы: Behnke H., Bachmann F., Fladt K.
Аннотация: Fundamentals of Mathematics represents a new kind of mathematical publication. While excellent technical treatises have been written about specialized fields, they provide little help for the nonspecialist; and other books, some of them semipopular in nature, give an overview of mathematics while omitting some necessary details. Fundamentals of Mathematics strikes a unique balance, presenting an irreproachable treatment of specialized fields and at the same time providing a very clear view of their interrelations, a feature of great value to students, instructors, and those who use mathematics in applied and scientific endeavors. Moreover, as noted in a review of the German edition in Mathematical Reviews , the work is "designed to acquaint [the student] with modern viewpoints and developments. The articles are well illustrated and supplied with references to the literature, both current and ‘classical’".
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1984
Количество страниц: 557
Добавлена в каталог: 01.12.2013
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Local density 453
Local parameter 231 234
Local properties 453
Local theory 439
Local uniformizing parameter 244
Local, meaning of 439
Locally compact topological space 514
Locally countable 453
Logarithm function 22 40
Logarithms, natural 38
Looman — Menchoff theorem 208
Lower limit 8
Luzin, N. 466
M-neighborhood 449
MacLane 271
Majorant (minorant) functions 328
Majorant series 441
Majorizing sequence 8
Manifolds, characteristic 309 311 321 322 337 344
Manifolds, complex 272
Manifolds, differentiable 184—186 513
Manifolds, discriminant 282
Manifolds, orientable 140 185
Manifolds, Riemannian 124—125 184—186
Manifolds, two-dimensional 231 245n
Mapping 23 26 41 42
Mapping, angle-preserving 210
Mapping, biholomorphic 258
Mapping, complete 424
Mapping, conformal 210 325
Mapping, continuous 24 455
Mapping, contractive 423 424
Mapping, defined by holomorphic functions 209
Mapping, equiform 194
Mapping, extension of 449
Mapping, fixed point of 423
Mapping, function as 215
Mapping, homogeneous 201
Mapping, homogeneous linear 45
Mapping, linear 516
Mapping, locally univalent 209
Mapping, open 455
Mapping, projection 239
Mapping, scale-preserving 209
Mapping, schlicht 209
Mapping, segment-preserving 209
Mapping, sense-preserving conformal 211
Mapping, sense-reversing conformal 211
Marginal distribution function 97
Marginal probability distribution 97
Mathematical logic 509
Matrix, left reciprocal 406
Maximum principle, for functions of a complex variable 226
Maximum, of two functions 54n
Maximum-minimum principle 327 328
Maxwell equations 307
Maxwell, J.C. 89
Mean density 497
Mean of k 102
Mean-value theorem 30
Measurability, of functions 66
Measurable function 93
Measurable set 63
Measurable space 93
Measure 53 67
Measure , density of 83
Measure and integration, theory of 77
Measure, theory of 77
Mechanical system 416
Medium, of function 74
mellin 501
Membrane, vibrations of 307
Meromorphic continuation 241
Meromorphic differential 234
Meromorphic function in complex plane 226—229
Meromorphic function, algebraic equation for 248
Meromorphic function, algebraic function field of 248
Meromorphy 228
Metric spaces 11—12 423 513
MIN 486
minimax 411
Minimum, of two functions 54n
Minorant (majorant) functions 328
Minorizing sequence 8
Mirror image 193
Mitrovic, D. 494
Mixed structure 522
Model 508
Modification, concept of 275
Modification, meromorphic 275
Modification, proper continuous 275
Modification, theory of vi 253
Module 519
Module of sets 452
Modulus problem 250n
Moebius strip 262
Molecule 418
moment 102
Moment, "central" 102
Moment, first 102
Momentum coordinates 416
Monoid 524
Monotone increasing (decreasing) 7
Monotone limits 58
Monotone sequences 7—8
Monotone sequences, fundamental theorem on 7
Montgomery 517
Moore — Smith convergence 526
Moore — Smith sequences v 2 12—13 14 15
Motion 42
Motion of electron 417
Motion, hyperbolic 194
Mountain 43
mu*-equivalence 70
mu-integral 71
mu-upper integral 69
Multidimensional normal distribution 97
Multiple integrals vi
Multiple integrals, laws for 125
Multiplication, alternating 151 153
Multiplication, continuity of 7
Multiplication, exterior 151 155
Multiplicity, of zero 195
n-dimensional space, functions in 42—52
Nabla operator 180
Natural number 524
Neighborhood 3 20 429
Neighborhood and compactification 264—266
Neighborhood filter 14
Neighborhood set 198
Neighborhood, concept of 196
Neighborhood, coordinate 184
Neighborhood, deleted 225
Neighborhood, elementary 196
Neighborhood, system of 263
Neumann series 428
Noether, Emmy 510 512
Non-Borel set 458
Non-Euclidean motion 194
Nonanalytic segment, of surface 325
Nonhomogeneous differential equation 286
Nonlinear differential equation 518
Nonorientability 270
Norm 69 190 396
Normal form 323
Normal form of differential form 156
Normalization 398
Normed algebra 516
Normed space 69n
North pole 263
Novikov independence theorem 471 475
Novikov separation theorem 472
Number circle 498
Number sphere 262
Number theory 499 500
Number triples, equivalence class of 259
Number triples, singular equivalence class of 260
Number, cardinal 514
Number, complex 188—191
Number, hypertranscendental 493
Number, natural 524
Number, revolution 429 432
Number, transcendental 491
Numerical sequence, limit of 197
Open kernel 64n
Open set 18 197
Operator 392
Operator equations 423 434—437
Operator in a domain 415
Operator, adjoint 403
Operator, completely continuous 341 342 413
Operator, domain of 524
Operator, energy 417
Operator, groups with 511
Operator, integral representation of 415
Operator, linear 400
Operator, nabla 180
Operator, self-adjoint 408 413—418
Operator, solution 346
Operator, star 159
Operator, symmetric 341
Operator, unbounded 415
Ordered pair 17
Ordered set 521
Ordinary differential equations vi
Ordinary point 239
Orientability 268
Orientable 185 268
Orientable manifold 140 185
Orientable surface-segment 137
Orientation 126
Orientation, induced 132 140
Orientation, opposite 126
Oriented boundary 126
Oriented Riemann surface 246
Oriented surface-segment 134
Orthogonality 398
Orthonormal system 398 412 442
Orthonormal system, complete 398
Orthonormality 168 186
Oscillation, forced 302
Oscillation, free 302
Oscillation, theorem of 298
Osgood space 273
Outer composition 524
p-adic numbers 519
Pappus and Pascal theorem 254 255 270
Parabolic curves 325
Parallel lines 252
Parallel lines, equivalence class of 259
PARAMETER 126
Parameter planes 244
Parameter, global uniformizing 250
Parameter, local uniformizing 244 271
Parameter, variation of 289
Parametric representation, of arc 126
Parseval equation 404
Partial derivative 43
Partial derivative of distribution 85
Partially ordered 55n
Partition 54
Partition of integral 13
Pascal and Pappus theorem 254 255 270
Paths 234
Paths, bounding system of 217
Paths, simple 219
Paths, simple closed 220
PCA-set 471
PCPCA-set 471
Peano theorem 290
Peano — Jordan content 62
Peano, G. 508
Peano, G., axioms of 518
Peano, G., convergence theorem of 278
Periodic solution 302
Perpendicular 193
Perron, O. 326 328 336 338
Perturbation 296 312
Perturbed differential equation 302
Pfaffian form 145 156 160 168
Pfaffian form, orthonormal basis of 170 186
Phase plane 303
Phi-function 358
PI 351n 491
Picard — Lindeloef method of iteration 279
Picard — Lindelof method 279
Piecewise smooth curves 130
Piecewise smooth surfaces 130
Planck quantum of action 417
Plane triadic set 477
Plane, closing of 266—271
Plane, Euclidean 176 192 259 262—263
Plane, infinitely distant 273
Plane, nonorientable 270
Plane, parameter 244
Plane, projective 259—262
Poincare lemma, first 160 164
Poincare lemma, first, second 161 164 176
Point 3
Point at infinity 252 259 260
Point of accumulation 196
Point of continuity 461
Point spectrum 413
Point, branch 210 239
Point, continuity at 454
Point, double 130
Point, end 126
Point, hyperinfinitely distant 274
Point, ideal 227
Point, initial 126
Point, isolated 198
Point, limit 11 196 198
Point, neighborhoods of 230
Point, open set of 197
Point, ordinary 239
Point, oriented 126
Point, singular 282
Point, usefulness of 253—259
Poisson distribution 96 122
Poisson, S.D. 89
Pole 235
Pole of a differential 235
Position coordinates 416
potential energy 416
Potential equation 306 314
Potential-theoretic method, for elementary functions 249
Power 446
Power series 34—35 215 229
Power series and Cauchy integrals 222
Power series, derivatives of 216
Preservation of domains, theorem on 226
Prime ideal 517
Prime number theorem 482
Prime number theorem, consequences of 484—485
Prime number theorem, elementary proofs of 489
Prime number theorem, second 487 488
Primes, Bertrand — Cebysev theorem 483
Primes, Bohr — Landau theorem 486
Primes, Cudakov theorem 485
Primes, Dirichlet theorem 488
Реклама