Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Behnke H., Bachmann F., Fladt K. — Fundamentals of mathematics. Volume III. Analysis
Behnke H., Bachmann F., Fladt K. — Fundamentals of mathematics. Volume III. Analysis



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Fundamentals of mathematics. Volume III. Analysis

Авторы: Behnke H., Bachmann F., Fladt K.

Аннотация:

Fundamentals of Mathematics represents a new kind of mathematical publication. While excellent technical treatises have been written about specialized fields, they provide little help for the nonspecialist; and other books, some of them semipopular in nature, give an overview of mathematics while omitting some necessary details. Fundamentals of Mathematics strikes a unique balance, presenting an irreproachable treatment of specialized fields and at the same time providing a very clear view of their interrelations, a feature of great value to students, instructors, and those who use mathematics in applied and scientific endeavors. Moreover, as noted in a review of the German edition in Mathematical Reviews , the work is "designed to acquaint [the student] with modern viewpoints and developments. The articles are well illustrated and supplied with references to the literature, both current and ‘classical’".


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1984

Количество страниц: 557

Добавлена в каталог: 01.12.2013

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Local density      453
Local parameter      231 234
Local properties      453
Local theory      439
Local uniformizing parameter      244
Local, meaning of      439
Locally compact topological space      514
Locally countable      453
Logarithm function      22 40
Logarithms, natural      38
Looman — Menchoff theorem      208
Lower limit      8
Luzin, N.      466
M-neighborhood      449
MacLane      271
Majorant (minorant) functions      328
Majorant series      441
Majorizing sequence      8
Manifolds, characteristic      309 311 321 322 337 344
Manifolds, complex      272
Manifolds, differentiable      184—186 513
Manifolds, discriminant      282
Manifolds, orientable      140 185
Manifolds, Riemannian      124—125 184—186
Manifolds, two-dimensional      231 245n
Mapping      23 26 41 42
Mapping, angle-preserving      210
Mapping, biholomorphic      258
Mapping, complete      424
Mapping, conformal      210 325
Mapping, continuous      24 455
Mapping, contractive      423 424
Mapping, defined by holomorphic functions      209
Mapping, equiform      194
Mapping, extension of      449
Mapping, fixed point of      423
Mapping, function as      215
Mapping, homogeneous      201
Mapping, homogeneous linear      45
Mapping, linear      516
Mapping, locally univalent      209
Mapping, open      455
Mapping, projection      239
Mapping, scale-preserving      209
Mapping, schlicht      209
Mapping, segment-preserving      209
Mapping, sense-preserving conformal      211
Mapping, sense-reversing conformal      211
Marginal distribution function      97
Marginal probability distribution      97
Mathematical logic      509
Matrix, left reciprocal      406
Maximum principle, for functions of a complex variable      226
Maximum, of two functions      54n
Maximum-minimum principle      327 328
Maxwell equations      307
Maxwell, J.C.      89
Mean density      497
Mean of k      102
Mean-value theorem      30
Measurability, of functions      66
Measurable function      93
Measurable set      63
Measurable space      93
Measure      53 67
Measure $\mu_{f}$, density of      83
Measure and integration, theory of      77
Measure, theory of      77
Mechanical system      416
Medium, of function      74
mellin      501
Membrane, vibrations of      307
Meromorphic continuation      241
Meromorphic differential      234
Meromorphic function in complex plane      226—229
Meromorphic function, algebraic equation for      248
Meromorphic function, algebraic function field of      248
Meromorphy      228
Metric spaces      11—12 423 513
MIN      486
minimax      411
Minimum, of two functions      54n
Minorant (majorant) functions      328
Minorizing sequence      8
Mirror image      193
Mitrovic, D.      494
Mixed structure      522
Model      508
Modification, concept of      275
Modification, meromorphic      275
Modification, proper continuous      275
Modification, theory of      vi 253
Module      519
Module of sets      452
Modulus problem      250n
Moebius strip      262
Molecule      418
moment      102
Moment, "central"      102
Moment, first      102
Momentum coordinates      416
Monoid      524
Monotone increasing (decreasing)      7
Monotone limits      58
Monotone sequences      7—8
Monotone sequences, fundamental theorem on      7
Montgomery      517
Moore — Smith convergence      526
Moore — Smith sequences      v 2 12—13 14 15
Motion      42
Motion of electron      417
Motion, hyperbolic      194
Mountain      43
mu*-equivalence      70
mu-integral      71
mu-upper integral      69
Multidimensional normal distribution      97
Multiple integrals      vi
Multiple integrals, laws for      125
Multiplication, alternating      151 153
Multiplication, continuity of      7
Multiplication, exterior      151 155
Multiplicity, of zero      195
n-dimensional space, functions in      42—52
Nabla operator      180
Natural number      524
Neighborhood      3 20 429
Neighborhood and compactification      264—266
Neighborhood filter      14
Neighborhood set      198
Neighborhood, concept of      196
Neighborhood, coordinate      184
Neighborhood, deleted      225
Neighborhood, elementary      196
Neighborhood, system of      263
Neumann series      428
Noether, Emmy      510 512
Non-Borel set      458
Non-Euclidean motion      194
Nonanalytic segment, of surface      325
Nonhomogeneous differential equation      286
Nonlinear differential equation      518
Nonorientability      270
Norm      69 190 396
Normal form      323
Normal form of differential form      156
Normalization      398
Normed algebra      516
Normed space      69n
North pole      263
Novikov independence theorem      471 475
Novikov separation theorem      472
Number circle      498
Number sphere      262
Number theory      499 500
Number triples, equivalence class of      259
Number triples, singular equivalence class of      260
Number, cardinal      514
Number, complex      188—191
Number, hypertranscendental      493
Number, natural      524
Number, revolution      429 432
Number, transcendental      491
Numerical sequence, limit of      197
Open kernel      64n
Open set      18 197
Operator      392
Operator equations      423 434—437
Operator in a domain      415
Operator, adjoint      403
Operator, completely continuous      341 342 413
Operator, domain of      524
Operator, energy      417
Operator, groups with      511
Operator, integral representation of      415
Operator, linear      400
Operator, nabla      180
Operator, self-adjoint      408 413—418
Operator, solution      346
Operator, star      159
Operator, symmetric      341
Operator, unbounded      415
Ordered pair      17
Ordered set      521
Ordinary differential equations      vi
Ordinary point      239
Orientability      268
Orientable      185 268
Orientable manifold      140 185
Orientable surface-segment      137
Orientation      126
Orientation, induced      132 140
Orientation, opposite      126
Oriented boundary      126
Oriented Riemann surface      246
Oriented surface-segment      134
Orthogonality      398
Orthonormal system      398 412 442
Orthonormal system, complete      398
Orthonormality      168 186
Oscillation, forced      302
Oscillation, free      302
Oscillation, theorem of      298
Osgood space      273
Outer composition      524
p-adic numbers      519
Pappus and Pascal theorem      254 255 270
Parabolic curves      325
Parallel lines      252
Parallel lines, equivalence class of      259
PARAMETER      126
Parameter planes      244
Parameter, global uniformizing      250
Parameter, local uniformizing      244 271
Parameter, variation of      289
Parametric representation, of arc      126
Parseval equation      404
Partial derivative      43
Partial derivative of distribution      85
Partially ordered      55n
Partition      54
Partition of integral      13
Pascal and Pappus theorem      254 255 270
Paths      234
Paths, bounding system of      217
Paths, simple      219
Paths, simple closed      220
PCA-set      471
PCPCA-set      471
Peano theorem      290
Peano — Jordan content      62
Peano, G.      508
Peano, G., axioms of      518
Peano, G., convergence theorem of      278
Periodic solution      302
Perpendicular      193
Perron, O.      326 328 336 338
Perturbation      296 312
Perturbed differential equation      302
Pfaffian form      145 156 160 168
Pfaffian form, orthonormal basis of      170 186
Phase plane      303
Phi-function      358
PI      351n 491
Picard — Lindeloef method of iteration      279
Picard — Lindelof method      279
Piecewise smooth curves      130
Piecewise smooth surfaces      130
Planck quantum of action      417
Plane triadic set      477
Plane, closing of      266—271
Plane, Euclidean      176 192 259 262—263
Plane, infinitely distant      273
Plane, nonorientable      270
Plane, parameter      244
Plane, projective      259—262
Poincare lemma, first      160 164
Poincare lemma, first, second      161 164 176
Point      3
Point at infinity      252 259 260
Point of accumulation      196
Point of continuity      461
Point spectrum      413
Point, branch      210 239
Point, continuity at      454
Point, double      130
Point, end      126
Point, hyperinfinitely distant      274
Point, ideal      227
Point, initial      126
Point, isolated      198
Point, limit      11 196 198
Point, neighborhoods of      230
Point, open set of      197
Point, ordinary      239
Point, oriented      126
Point, singular      282
Point, usefulness of      253—259
Poisson distribution      96 122
Poisson, S.D.      89
Pole      235
Pole of a differential      235
Position coordinates      416
potential energy      416
Potential equation      306 314
Potential-theoretic method, for elementary functions      249
Power      446
Power series      34—35 215 229
Power series and Cauchy integrals      222
Power series, derivatives of      216
Preservation of domains, theorem on      226
Prime ideal      517
Prime number theorem      482
Prime number theorem, consequences of      484—485
Prime number theorem, elementary proofs of      489
Prime number theorem, second      487 488
Primes, Bertrand — Cebysev theorem      483
Primes, Bohr — Landau theorem      486
Primes, Cudakov theorem      485
Primes, Dirichlet theorem      488
1 2 3 4 5 6
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте