Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ivey T.A., Landsberg J.M. — Cartan for beginners: differential geometry via moving frames exterior differential systems
Ivey T.A., Landsberg J.M. — Cartan for beginners: differential geometry via moving frames exterior differential systems



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Cartan for beginners: differential geometry via moving frames exterior differential systems

Авторы: Ivey T.A., Landsberg J.M.

Аннотация:

This book is an introduction to Cartan's approach to differential geometry. Two central methods in Cartan's geometry are the theory of exterior differential systems and the method of moving frames. This book presents thorough and modern treatments of both subjects, including their applications to both classic and contemporary problems.

It begins with the classical geometry of surfaces and basic Riemannian geometry in the language of moving frames, along with an elementary introduction to exterior differential systems. Key concepts are developed incrementally with motivating examples leading to definitions, theorems, and proofs.

Once the basics of the methods are established, the authors develop applications and advanced topics. One notable application is to complex algebraic geometry, where they expand and update important results from projective differential geometry.

The book features an introduction to $G$-structures and a treatment of the theory of connections. The Cartan machinery is also applied to obtain explicit solutions of PDEs via Darboux's method, the method of characteristics, and Cartan's method of equivalence.



Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2003

Количество страниц: 392

Добавлена в каталог: 28.11.2013

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Tangent bundle      335
Tangent space      335
Tangent star      86
Tangential defect      129
Tangential defect, critical      135
Tangential surface      40
Tangential variety      86
Tangential variety, dimension of      128
Tautological EDS for torsion-free G-structures      293
Tautological form for coframe bundle      49
Tensor product      312
Terracini's Lemma      87
Third fundamental form, projective      96
TM, tangent bundle      335
Torsion of connection      279
Torsion of curve in $\mathbb{E}^{3}$      25
Torsion of G-structure      280
Torsion of linear Pfaffian system      165 175
Transformation, Baecklund      232 236
Transformation, Cole — Hopf      232 238
Transformation, fractional linear      20
Transformation, Lie      231
Transformation, Miura      234
Triangulation      61
Triply orthogonal systems      251-254
U(n), unitary group      319
Umbilic point      39
Uniruled complex manifold      310
Uniruled variety      113
Unitary group      319
Variation of Hodge structure      189
Variety, algebraic      82
Variety, dual      87 118
Variety, flag      85
Variety, miniscule      104
Variety, rational homogeneous      83
Variety, ruled      113
Variety, secant      86
Variety, Segre      84
Variety, spinor      85 106
Variety, tangential      86
Variety, uniruled      113
Variety, Veronese      85
Vector bundle, induced      283
Vector field      335
Vector field, flow of a      6
Vector field, left-invariant      17
Veronese embedding      85
Veronese re-embedding      85 109
Veronese variety      85
Veronese variety, fundamental forms of      99
Vertical vector      339
Volume form      46
Waring problems      313
Warp of a surface      4
Wave equation      203 349
Web      267
Web, hexagonality of      271
Wedge product      314
Wedge product, matrix      18
Weierstrass representation      228—229
Weight      327
Weight diagram for invariants      305
Weight lattice      329
Weight zero invariant      300
Weight, highest      329
Weight, multiplicity of      327
Weingarten equation      224
Weingarten surface, linear      183 224 261
Weyl curvature      330
Wirtinger inequality      199
Zak's theorem on lineal normality      128
Zak's theorem on Severi varieties      128
Zak's theorem on tangencies      131
[X,Y]      336
{ }, linear span      340
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте