Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Stakgold I. — Boundary value problems of mathematical physics
Stakgold I. — Boundary value problems of mathematical physics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Boundary value problems of mathematical physics

Автор: Stakgold I.

Аннотация:

For more than 30 years, this two-volume set has helped prepare graduate students to use partial differential equations and integral equations to handle significant problems arising in applied mathematics, engineering, and the physical sciences. Originally published in 1967, this graduate-level introduction is devoted to the mathematics needed for the modern approach to boundary value problems using Green's functions and using eigenvalue expansions. Now a part of SIAM's Classics series, these volumes contain a large number of concrete, interesting examples of boundary value problems for partial differential equations that cover a variety of applications that are still relevant today. For example, there is substantial treatment of the Helmholtz equation and scattering theory — subjects that play a central role in contemporary inverse problems in acoustics and electromagnetic theory.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1987

Количество страниц: 352

Добавлена в каталог: 24.11.2013

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Perpendicular      see "Orthogonal"
Poisson summation formula      46 47 50
Polar identity      164
Pole of fundamental solution      62
Polynomials, approximation by      see "Weierstrass approximation theorem"
Positive definite, operator      see "Positive operator"
Positive definite, quadratic form      112
Positive operator      165 224
Projection      121 149
Projection operator      149
Projection theorem      129
Pseudofunction      48—50
Quadratic form      112
Range of function      93 95
Range of transformation      95
Rank of matrix      79
Rank of transformation on Euclidean space      153
Rayleigh quotient      227
Rayleigh — Ritz procedure for eigenvalues      228
Rayleigh — Ritz procedure for eigenvalues for inhomogeneous equation      245 248
Real operator      225
regular boundary value problem      269
Regular distribution      33
Regular point of differential equation      269 297
Regular transformation on Euclidean space      151
Regular transformation on Hilbert space      166
Resolution of the identity      161
Resonance      82—83
Riemann — Lebesgue lemma      126 185
Riesz representation theorem      136
Riesz — Fischer theorem      122
Ritz — Rayleigh      see "Rayleigh — Ritz"
Schroedinger equation      322
Schwarz constants      232
Schwarz inequality      107 109 111 117
Schwarz iteration      231
Schwarz quotients      232
Secular equation      156
Self-adjoint boundary value problem      71
Self-adjoint operators      see also "Symmetry"
Self-adjoint operators of differential type      74 219—220
Self-adjoint operators of integral type      212
Self-adjoint operators on Euclidean space      152
Self-adjoint operators on Hilbert space      172
Self-adjoint operators, alternative theorem for      172
Self-adjoint operators, formally      70
Self-adjoint system      71
Separable kernel      192 198 242
Sets of measure zero      105
Sets, bounded      184
Sets, closed      114
Sets, closure of      114
Sets, compact      114 164 184
Sets, dense      114
Sets, exterior of      116
Sets, spanning      119
Shift operator      169
Shift operator, modified      169
Simple eigenvalue      213
singular boundary value problem      269 283—322
Singular boundary value problem in limit-circle case      297 301
Singular boundary value problem in limit-point case      297 301
Singular distribution      33
Singular point of differential equation      59 297
Singular transformation on Euclidean space      151
Singular transformation on Hilbert space      167
Spaces of n-tuples      98 103
Spaces of square integrable functions      111
Spaces of test functions      29
Spaces, Banach      106
Spaces, complex Euclidean      110
Spaces, Hilbert      110 116—190
Spaces, inner product      107
Spaces, linear      96—190
Spaces, metric      99—105
Spaces, real Euclidean      110
Spaces, separable      116
Spaces, vector      96—190
Spanning set      119 128
Spectral resolution      161
Spectral theorem      160
Spectral theory of second order differential operators      259—322
Spectrum of Hilbert — Schmidt operators      212—220
Spectrum of self-adjoint operator      184
Spectrum of transformation on Hilbert space      180—184
Spectrum, continuous      181
Spectrum, point      181
Spectrum, residual      181
Step response      78
Stirling's formula      27
Successive approximations      see "Neumann series"
Superposition principle      4 78
Symbolic function      34 see
Symmetry of differential operator      75—76
Symmetry of Green's function      71
Symmetry of kernel      212
Symmetry of transformation on Euclidean space      152 159
Symmetry of transformation on Hilbert space      172
system      see also "Boundary value problem"
System, adjoint      69—71
System, self-adjoint      71
Test functions      28—30
Test functions, complex-valued      34
Test functions, convergence for      30
Test functions, space of      29
Transformations      94 139—190 191—258
Transformations on Euclidean space      146—165
Transformations on Hilbert space      139—146 165—190
Transformations, adjoint      152 170
Transformations, bounded      140
Transformations, closed      142 168
Transformations, commuting      139
Transformations, completely continuous      185
Transformations, continuous      140
Transformations, domain of      139
Transformations, eigenvalues of      154
Transformations, eigenvectors of      154
Transformations, extensions of      141
Transformations, indefinite      165
Transformations, integral      144 191—258
Transformations, inverse of      95 140 151 166
Transformations, kernel of      144 192
Transformations, linear      140
Transformations, negative and nonnegative      165
Transformations, null space of      139 143 171
Transformations, nullity of      153
Transformations, one-to-one      139 166
Transformations, positive and nonpositive      165
Transformations, projection      149
Transformations, range of      139 171
Transformations, rank of      153
Transformations, regular      151 166
Transformations, self-adjoint      152
Transformations, singular      151 167
Transformations, symmetric      152 159 172
Transformations, unbounded      145
Translation of distribution      35
Transposed matrix      80
Triangle inequality      100
Uniqueness      see "Existence and uniqueness"
Variation iteration      231
Variational principles      see "Extremal principles"
Vector spaces      96—99 105—190
Vector spaces, basis for      97—98
Vector spaces, complex      96—97
Vector spaces, dimension of      97
Vector spaces, inner product on      107 109
Vector spaces, normed      104
Vector spaces, real      96
Volterra integral equations      196 209—211
Wave equation      325—326
Weak solutions of differential equations      53
Weierstrass approximation theorem      27 115
Weyl's theorem      297
Wronskians      59—61
Wronskians for Bessel functions      330—331
Wronskians, Abel's formula for      60
Wronskians, Green's functions and      272
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте