Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Lectures on elliptic curves
Автор: Cassels J.W.S.
Аннотация:
The study of special cases of elliptic curves goes back to Diophantos and Fermat, and today it is still one of the liveliest centers of research in number theory. This book, addressed to beginning graduate students, introduces basic theory from a contemporary viewpoint but with an eye to the historical background. The central portion deals with curves over the rationals: the Mordell-Wei finite basis theorem, points of finite order (Nagell-Lutz), etc. The treatment is structured by the local-global standpoint and culminates in the description of the Tate-Shafarevich group as the obstruction to a Hasse principle. In an introductory section the Hasse principle for conics is discussed. The book closes with sections on the theory over finite fields (the "Riemann hypothesis for function fields") and recently developed uses of elliptic curves for factoring large integers.