Авторизация
Поиск по указателям
Curry H.B. — Foundations of mathematical logic
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Foundations of mathematical logic
Автор: Curry H.B.
Аннотация: Comprehensive account of constructive theory of first-order predicate calculus. Covers formal methods including algorithms and epi-theory, brief treatment of Markov’s approach to algorithms, elementary facts about lattices and similar algebraic systems, more. Philosophical and reflective as well as mathematical. Graduate-level course. 1963 ed. Exercises.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Издание: 2 Revised
Год издания: 1977
Количество страниц: 417
Добавлена в каталог: 20.11.2013
Операции: Положить на полку |
Скопировать ссылку для форума |
Скопировать ID
Предметный указатель
Equivalence between formulation types for L systems of negation, as operation in propositional algebra 161
Equivalence between formulation types for L systems of negation, pure 158
Equivalence operation 35
Equivalent in definitional extension 109
Error 88
ET 215 277 279 see
ET' 215
Etwas 86
Eubulides of Miletus 6
Eutactic system 58 60 62
Ex falso quodlibet (efq) 264 285 306—307
Examples on nature of mathematics 11—13
Excluded middle,law of 260 285
Exclusive sum 154
Existential quantification 323
Exner and Rosskopf 82
Explicit, in definitional extensions 109
Expressions, mention of 30ff.
Expressions, mention of, words as 30
Extension 94
Extension of theory 46
Extension theorems 324—327
Extremal clause 83
f 259 306 316
F formulation 261—262 278n.
F formulation, equivalence to other formulations 267—271
F transformation 269
Falsity 255
Fevrier, Paulette 161
Feys, R. 19 25 243 306 368 see
fi 280
Ficken, F.A. 370
Findlay, J. 121
Finitary intuitive reasonings 11
Finite Boolean algebra 296—297 308
Finite distributive lattice 144
Finite interpretations 296
Finite operations, derivational rules for 322
Fitch, F.В. 19 24—25 251n. 368
Fj 259 262 276 326
FN formulation 261—262
FN formulation, equivalence to other formulations 267—271
Formal deducibility, theory of 173
Formal objects 50 51 54
Formal objects, simplifications of 67
Formal statement 45
Formal systems 28—92
Formal theory 85
Formal variables 111
Formal, ob systems and 83 85
Formalism 8 10 14 27
Formalization 61—62
Formalized contensive theory 14
Formation rules 53
Forms, law of 301n.
Formulation I 199 232 249
Formulation II 199 351
Formulation III 231—234
Formulation IIK 201
Formulation IK 201 232
Formulation IV 233
Formulations, modified 264
Formulations, modified, singular and multiple 329
Foster, R.L. 163
Fowler, H.W. 115
Fraenkel and Bar-Hillel 20—23 26 121 161
Fraenkel, A.A. 5n. 20—23 26 121 161 see
Free Boolean algebra 300
Free Boolean extension 300
Free modular lattice 139
Free occurrence 318 321—322
Free system 127
Free variables 112 115
Frege, Gottlob 4n. 9 12n. 17n. 21—22 61n. 82 84 89 123 160 246 248 307 311n.
Frink, O. 308—309
Function, closure of 32
Function, functor and 33
Functional abstraction 116
Functional calculus 343
Functionality 82
functors 32 86
Functors, degree and closure of 33
Functors, mention of 34
Functors, singulary 33n.
Functors, special 35
Functors, technique for 34—37
Galler, B.A. 358
Gegalkine 161
Geiger, M. 4n.
General system 127
Generalization 323
Generalization, epitheoretic 68
Generalization, inductive 99
Generalization, schematic 98
Generalized arithmetic 85
Generating specifications 83
Gentzen, G. 25—26 83 124 165 175—177 188 245—260 305—306 351n.
Geometry 2
Geometry, compared to logic 2
Gergonne, J.D. 162
Gilmore, P.C. 27 358
Glivenko theorem 279 288 309
Glivenko, M.V. 159 162 248 279 306—307
Goedel number 58
Goedel representation 58
Goedel, Kurt 11 15 18 22—23 26 88 95 120 123—124 184 250 279 309 349 354 368
Goedel, Kurt, completeness theorem of 95 121 354 357
Goedel, Kurt, incompleteness theorem of 11 16 27 95 120 123
Gonseth, F. 5n. 85n.
Goodstein, R.L. 19 27 123—124
Grammatical category 32 43
Grammatics 32—34 82 91 314ff.
Grassman, H. 24
Greek letters, use of 74 104 198
Grelling paradox 6
Group 64 155
Group theory, word problem of 84
Groupe logique 161
Grzegorczyk, A. 24
H form of algebra 175
H formulations 178—183 283—287 311
H formulations of necessity 366
H formulations of quantification 343—348 357
H formulations, history of 247 308
H systems 283
HA form of propositional algebra 175
HA history of 248
HA matrix interpretation 184
HA systems 178—180
Hailperin,Т. 349 358 see
Halbverband 161
Hallden, S. 368
Halmos, P.R. 66 358
Hardy, G.H. 16
Harrop, R. 253 309
Hauptsatz (Gentzen) theorem 250 see
Hausdorff, F. 23
HC form, propositional algebra 175
HC system 182 184 248 285—286
HC system, history of 248
HE system 285—286
Henkin 161
Henkin and Tarski 358
Henkin, L. 22 83 161 321 324
Herbrand — Gentzen theorem 351—352 356—357
Herbrand, J. 83 123 161 351 358
Hermes and Koethe 159 378
Hermes and Scholz 19—21 248 307
Hermes, H. 19—20 83 159 161 247—248
Hertz, P. 83 246—247
Heterological adjectives 6
Heyting algebra 163
Heyting lattice 162
Heyting, A. 9 15 26 124 183 245 248 305—307
Hilbert and Ackermann 19 22 26 348 357—358 373
Hilbert and Bernays 19 23 25—27 83 183 246 248—249 307 314 324 342 356—358
Hilbert,David 11 15—17 19 22—27 61—62 83 85—89 120 122 183 246—249 288 307 342 348 358
Hintikka, K.J.J. 358 368
Hiz, H. 309
HJ 283 307 309
HJ, standard formulation 285
HK 286 309
HK, completeness 300
HK, standard formulation 286ff.
HM 283ff. 307
HM, standard formulation 285
Homomorphism 101 174 325
Howard, W. 304
HS system 288
Huntington, E.V. 88n. 159—160 295 304 308
Husserl, E. 123
Hypothesis of the stage 208
Ideal 140
Idempotency 126
Idempotent laws 135
Identity, definitional 109
III-demonstrators 233
Immediate descendant 199
Implication 252
Implication rule 193
Implication, analysis of 97ff.
Implication, theory of 165—253
Implication, weakened 250ff.
Implicative lattices 140 143—144 161
Implicative lattices, classical 149 157—158 289
Implicative operation 35
Implicative semilattices 141 147—148
Independence of operations 280
Indeterminates 112
Indeterminates, adjoined 99
Induction, types of 100
Inductive class 38 83
Inductive clauses 83
Inductive definition 83
Inductive generalizations 99
Inductive step 100
Inferences, direct inversion of 203
Inferences, permutability of 206—208
Inferential extension 94
Inferential methods 25
Infinity, axiom of 18
Infinity, nonenumerable 68
Infixes 34—36 126 316
Infixes, symbols for 35 51
Initial specifications 83
Inner system,representation of outer system in 363—365
Inscriptions 16 30 169
Instantiation 323
Intermediate logic 309
Interpretant 48 59
Interpretation 48—49 59—60
Interpretation, auxiliary 174
Interpretation, direct 59
Interpretation, full 48
Interpretation, normal 172
Interpretation, partial 48
Interpretation, versus representation 57
Intersection 161
Intuitionism 9—10 13 15 23 26
Intuitionistic negation 259 261
Intuitionistic nondeducibility 356
Intuitionistic propositional algebra see "HJ"
Invariance assumption 320
Invariance condition 114 115
Inversion principle (Lorenzen) 173 247
Inversion theorem 203 249 264 327—329 362
Inversion, direct, of inferences 203
Irregular rule 198
Isomorphism 174
IV-demonstrations 233
Japanese logic 306
Jargensen, J. 21 158
Jaskowski, N. 249 309 349 357
Jevons, W.S. 158 161
Johansson, I. 259 260 286 306—307 358
Join 161
Jonsson and Tarski 164
Jordan, P. 161 163
Jordan, Z. 24
Journal of Symbolic Logic 20 23
Journals, abbreviations for 369
Junctors 86
Kalish, D. see "Montague and Kalish"
Kamke, E. 23
Kanger, S. 288 306—307 368
Kemeny, J.G. 82
Kempner, A.J. 26
Ketonen, D. 199 202 224 249
Kleene, S.C. 19 25—27 41n. 70n. 83 85 100 110 121—123 199 249 309 329 341 356
Klein, Fritz 159 161
Kneale, W. 249
Kodifikat 25
Koethe, G. 159
Kolmogorov, A.N. 162 259 279 306 307 309
Konsequenzlogik, Lorenzen's 245 247
Kotarbinski, Т. 21 24 34
Kreisel, G. 27 124 250 309 375 see
Kripke, S.A. 243 250 253 260 279 306 368
Kronecker, L. 26
Kuroda, Sigekata 22
L deducibility 225—244
L formulation 259
L formulation, history of 249
L system 198—199 311
L system for necessity 362—365
L system for negation 261—278
L system, absolute 185
L system, intuitive introduction of 184—190 257—261
L system, modified 198
L system, morphology of 190—192 261—262
L system, theoretical formulation 192ff. 262—264
L* deducibility 331—333
L* systems 312 321
L* systems, morphology of 317
L* systems, theory of 324—342
L1-L4 134 156
LA system 185 188 317
LA* system 312 321 323 330 335
Labeling of tree diagram 40
Ladriere, J. 19—20 25 121 376
Lambda conversion 24 117
Lambda operation 116 121
Landau, E. 24 63
Langford, C.H. 158 see
Language 29
Language, communicative 30
Language, linear 30
Language, natural 30
Lattice(s) 131—139 161
Lattice(s), absolute implicative 162
Lattice(s), absolute subtractive 162
Lattice(s), classical implicative 149 157—158 289
Lattice(s), classical subtractive 149—163 289
Lattice(s), defined 134
Lattice(s), distributive 136—138
Lattice(s), duality in 134
Lattice(s), finite distributive 144
Lattice(s), Heyting 162
Lattice(s), Heyting, history of 158—159
Lattice(s), Heyting, implicative 140 143—144 161
Реклама