Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Fenstad J.E. — General recursion theory: An axiomatic approach
Fenstad J.E. — General recursion theory: An axiomatic approach



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: General recursion theory: An axiomatic approach

Автор: Fenstad J.E.

Аннотация:

This book has developed over a number of years. The aim has been to give a unified and coherent account of the many and various parts of general recursion theory. I have not worked alone. The Recursion Theory Seminar in Oslo has for a number of years been a meeting place for an active group of younger people. Their work and enthusiasm have been an important part of the present project. I am happy to acknowledge my debts to Johan Moldestad, Dag Normann, Viggo Stoltenberg-Hansen and John Tucker. It has been a great joy for me to work together with them.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1980

Количество страниц: 244

Добавлена в каталог: 19.11.2013

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Reducibility relations, $\mathbf{C}$-reflection      84
Reducibility relations, $\Theta$-computable      144
Reducibility relations, $\Theta$-definable, $<_{d}$      145
Reducibility relations, $\Theta$-semicomputable      144
Reducibility relations, many-one reducible      149
Reducibility relations, set recursion      194
Reducibility relations, weakly $\Theta$-computable      144
Reducibility relations, weakly $\Theta$-semicomputable      144
Reflection principles $\sum^{0}_{2}$-reflection      80
Reflection principles in higher types      204
Reflection principles in higher types, compactness      170
Reflection principles in higher types, further reflection      169
Reflection principles in higher types, simple reflection      169
register      4
Register, algebra      6
Register, counting      6
Regular set      146
Regular set theorem      147 148
Relations, $\Theta$-computable      25 50 69
Relations, $\Theta$-semicomputable      25 50 69
Relations, $\Theta_{\tau}$-computable      129
Relations, $\Theta_{\tau}$-semicomputable      129
Representation theorem for Spector classes      79
Representation theorem for Spector theories      77
Resolvable structures      110
Resolvable structures, $\Theta$-resolvable      111
Richter, W. [134]      80
Richter, W., Richter, Aczel [135]      83
Rudimentary set function      182 183
S-normal      58
Sacks, G.E.      169 202
Sacks, G.E. [138]      150
Sacks, G.E. [139]      157
Sacks, G.E. [140]      145 147
Sacks, G.E. [141]      136
Sacks, G.E. [142]      135
Sacks, G.E. [143]      169 171
Sacks, G.E. [144]      159 194 202
Sacks, G.E., Friedman, Sacks [37]      159
Sacks, G.E., Gandy, Sacks [43]      136
Sacks, G.E., Kreisel, Sacks [91]      52 65 123
Sasso, L.P. [145]      42
Schwichtenberg, H., Schwichtenberg, Wainer [146]      204
Schwichtenberg, Wainer [146]      204
Search computable      3
Second recursion theorem      95 96
Section      73 171
Section, extended      72
Selection principles, computation theories      51
Selection principles, higher types (Grilliot selection)      100
Selection principles, infinite theories      112 142
Selection principles, p-normal theories (Gandy selection)      68
Selection principles, precomputation theories      26
Selection principles, Spector classes      74
Set-recursion and admissibility      187 188
Set-recursion, set-recursive closure      185
Set-recursion, set-recursive function      182 183
Set-recursion, set-recursive relative to      185
Shepherdson, J.C. [148]      4
Shoenfield, J.R. [149]      204
Shore, R. [150]      150 157
Shore, R. [151]      157
Shore, R. [152]      109 140 145 150
Simple representation theorem      35
Simpson, S.G. [153]      147
Simpson, S.G. [154]      150
Simpson, S.G. [155]      158
Simpson, S.G. [156]      109 183
Simpson, S.G., Harrington, Kechris, Simpson [58]      134
Singlevalued theory      29
Spector 2-classes      106
Spector Class      73
Spector class, coding scheme      74
Spector class, normed      74
Spector class, parametrizable      74
Spector class, reduction property      74
Spector class, selection principle      74
Spector class, separation property      74
Spector theory      73
Spector theory, $\Theta$-Mahlo      128
Spector theory, equivalence of      76
Spector theory, weak Spector theory      87
Spector, C.      65 72
Spector, C. [158]      122
Spector, C. [159]      123
Spector, C. [160]      123
Spector, C. [161]      81 123
Spectrum      187
Splitting theorem      150
Stoltenberg-Hansen, V.      157 161
Stoltenberg-Hansen, V. [162]      148 150 151
Stoltenberg-Hansen, V. [163]      122 146 150 151
Stoltenberg-Hansen, V. [164]      147
Stoltenberg-Hansen, V. [165]      160
Stoltenberg-Hansen, V., Moldestad, Stoltenberg-Hansen, Tucker [108]      4 5 6 8
Stoltenberg-Hansen, V., Moldestad, Stoltenberg-Hansen, Tucker [109]      4 6 9
Stoltenberg-Hansen, V., Normann, Stoltenberg-Hansen [130]      158
Strong, H.R. [166]      3 42
Successor function      28 30
Superjump      204
Tait, W.      207
Tame approximation      153
Term evaluation function      9
Troelstra, A.S. [167]      207
Tucker, J.V. [168]      10
Tucker, J.V., Moldestad, Stoltenberg-Hansen, Tucker [108]      4 5 6 8
Tucker, J.V., Moldestad, Stoltenberg-Hansen, Tucker [109]      4 6 9
Tucker, J.V., Moldestad, Tucker [110]      14
Turing, A.M.      3
type structure      205
Universal function      34
Wagner, E.G. [169]      3 42
Wainer, S.S. [170]      204
Wainer, S.S., Normann, Wainer [131]      207
Wang, H. [171]      123
Weak definition by cases      59
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте