Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Bueche F. — Physic Properties of Polymers
Bueche F. — Physic Properties of Polymers



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Physic Properties of Polymers

Àâòîð: Bueche F.

Àííîòàöèÿ:

The purpose of this book is to provide an introduction to the underlying molecular principles governing the physical behavior of high polymers. It will serve as a text for the novice in the field of the mechanical properties of polymers, and it is expected that after completing a study of THE PHYSICAL PROPERTIES OF POLYMERS the reader will be well prepared for intelligent research in this area. Although a deliberate effort has been made to emphasize the qualitative factors of analysis so necessary to a thorough comprehension of the phenomena of polymer action, the equally important quantitative aspects of molecular behavior have not been neglected. Furthermore, the discussions have been arranged so as to permit those readers who desire only a qualitative understanding of the significant principles of the subject merely to scan the mathematics.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1962

Êîëè÷åñòâî ñòðàíèö: 362

Äîáàâëåíà â êàòàëîã: 10.11.2013

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Activation energy      255—256
Addition polymer, definition      3
Addition polymer, table      4—5
Affine deformation      42 58
Affine deformation, failure for networks      138—142 151
Arrhenius plot      90 91
Atactic polymer      318 319
Boltzmann superposition principle      153 173 187
Boltzmann superposition principle, applied to creep-recovery experiment      203
Boyer — Beaman rule      110—111
Branching, and network formation      9—11
Branching, effect on dynamic properties and viscosity      222—223
Breakdown of rubber by mechanical means      336—341
Breakdown of rubber networks      332—333
Brittle temperature      98—99 102
Brownian motion and chain dynamics      148
Chain end correction      45 228
Chain end distribution function      16—18 30—33 55
Chain folding      314—315
Cis and trans forms      319—320
Complex compliance      155 167
complex modulus      167 168
Compliance, complex      155 167
Compliance, definition of $D(t)$      125
Compliance, effect of molecular weight heterogeneity      223—224
Compliance, loss      156
Compliance, storage      156
Condensation polymer, definition      1—2
Condensation polymer, table of      6
Copolymerization, effect on glass temperature      120—123
Crazing      269
Creep, compliance for linear chains      208—209 214
Creep, compliance for networks      137 140
Creep, entanglement effects      201 ff.
Creep, measurement methods      179—183
Creep, of linear polymers      199 ff.
Creep, of networks      125 ff.
Creep, of polymeric glasses      248 ff.
Creep, of SBR samples      180 ff.
Creep, plateau region      200—202
Creep-recovery experiment      203
Critical hole size      106
Crosslink density, effect on creep curve      183
Crystal growth and nucleation      306 ff.
Crystal morphology      313—317
Crystallinity      295 ff.
Crystallinity, molecular factors affecting      317 320
Crystallite dimensions      296 305—307
Damping      158
Degree of polymerization      1
Delta function method      32—34
Dielectric dispersion, Debye equations      279—280
Dielectric dispersion, for small molecules      278—281
Dielectric dispersion, polymers      281—286
Dielectric dispersion, relation to jump frequency and friction constant      283
Dielectric loss, alpha and beta loss peaks      285—286
Dielectric loss, for polymers      282—286
Dielectric loss, for small molecules      280—281
Dielectric loss, relation to mechanical loss      286
Dielectric properties      272 ff.
Diffusion constant, for polymers at high temperatures      91
Diffusion constant, for small molecules at high temperatures      90
Diffusion constant, in terms of free volume      97
Diffusion constant, relation to viscosity for polymers      72
Diffusion of polymer molecules and jump frequency      63—69
Dipole moments of polymers      274—277
Dipole moments of polymers, free rotation model      276
Dipole moments of polymers, polyvinyl chloride types      277
Distribution function, about center of mass      16 19 34—35
Distribution function, chain end separation      16—18
Distribution function, for chain ends under stress      55
Distribution of relaxation times      see Relaxation time spectra
Distribution of retardation times      see Retardation time spectra
Doolittle equation      104—105
Dynamic compliance for linear molecules      210
Dynamic measurements      178 ff.
Dynamic modulus for linear molecules      210
Dynamic properties of linear polymers      206 ff.
Dynamic properties of linear polymers, effect of branching      222—223
Dynamic properties of linear polymers, effect of molecular weight heterogeneity      223—224
Dynamic viscosity, definition      167
Dynamic viscosity, frequency dependence      216—218
Dynamics of motion for a polymer molecule      129 ff. 148
Dynamics of motion for a polymer molecule, effect of friction      134 ff.
Effective network chains      228
Elasticity, of a chain      37—40
Elasticity, of a network      41—45 60
Energy loss      157
Energy of activation      90—93
Entanglement crosslink      201
Entanglement molecular weight, influence of polymer concentration      73—76
Entanglement molecular weight, table      76
Entanglement network      202
Entanglements, effect on diffusion constant      65 69
Entanglements, effect on dynamic behavior      212 ff.
Entanglements, effect on elasticity modulus      51
Entanglements, effect on molecular friction factor      67
Entanglements, in natural rubber      52
Entropy of fusion      300
Excluded volume effect      22
Fiber formation      320—322
Fillers, effect on modulus      46—49
Fillers, non-reinforcing      47
Fillers, reinforcing      46—49
Flaws, effect on strength      225 269
Forced vibration methods      192—195
Free vibration methods      187—192
Free volume, at glass temperature      115
Free volume, considerations in definition      115
Free volume, cooperative effects      94—96
Free volume, definition      105 115
Free volume, hole size distribution      95
Free volume, methods for computing      86—87
Free volume, of chain end      114—115
Freely orienting chain, definition      15
Freely orienting chain, dimensions of      21
Freely orienting chain, relation to reality      20—21
Friction factor      see Molecular friction factor and Segmental friction factor
Gel formation      9—11
Gel point      11
Glass temperature, as an iso-free volume state      112
Glass temperature, dependence on molecular structure      108—110
Glass temperature, effect of copolymerization upon      120—123
Glass temperature, effect of diluent on      116—118
Glass temperature, effect of molecular weight on      113—116
Glass temperature, methods of measurement      97—100
Glass temperature, of block and graft copolymers      120—121
Glass temperature, rate effects      100
Glass temperature, table of      110
Glass transition      see Glass temperature
Glasses, creep of polymethyl methacrylate      254—256
Glasses, creep of polystyrene      248—251
Glasses, dynamic properties      256—261
Glasses, non — Hookean behavior      249—253
Glasses, temperature-time superposition for      260
Glasses, tensile strength of      262 ff.
Glasses, variation of activation energy for      255—256
Glasses, variation of free volume in      256
Gordon — Taylor equation      122—123
Griffith crack theory      269—270
Gyration, radius of      16 28—30
Heat generation, equation for      157
Heat generation, in rubbers      195—197
Heat of fusion      299—300
High elongations, elasticity at      56
Hysteresis in vulcanized rubbers      195 197
Inverse Langevin function      57
Isotactic polymer      318—319
Jump distance, definition      62 64
Jump frequency, and glass temperature      101—104 108
Jump frequency, at high temperatures      89
Jump frequency, definition      62 64
Jump frequency, in terms of free volume      96—97
Jump frequency, models for      85—86
Junction motion in networks      138 ff. 151 197
Kelvin element      see Voigt — Kelvin model
Kinetic theory of elasticity      37—45 59—60
Kinetic theory of elasticity, experimental tests      53—55
Kinetic theory of elasticity, for swollen networks      60
Kinetic theory of elasticity, result for high elongations      57
Knotty tear      331
Langevin function      39
Logarithmic decrement      189
Loss compliance      156—159
Loss modulus, definition      167
Loss modulus, in polymeric glasses      256—261
Loss tangent      158
Mass distribution function      16 19 34—35
Maxwell model, and stress relaxation      163 ff.
Maxwell model, relaxation time for      165
Maxwell model, sinusoidal response      166—168
Measurement of dynamic properties      178 ff.
Mechanical breakdown of rubber      336—339
Mechanical breakdown of rubber, effect of molecular weight      338
Mechanical breakdown of rubber, effect of temperature      338
Melting point, and glass temperature      295—298
Melting point, effect of chain ends      302
Melting point, effect of chain ends, copolymerization      303—305
Melting point, effect of chain ends, crystallite size      301—302 305—306
Melting point, effect of chain ends, diluent      302
Melting point, effect of chain ends, impurities      303
Melting point, effect of chain ends, stretching      311
Melting point, in terms of entropy and heat of fusion      300
Melting point, influence of crystallization temperature      309—310
Melting point, table of      110
Microgel      8
Modes of motion, definition      132
Modes of motion, of a polymer chain      132 ff.
Modulus of rubbers under constant stress, filled stocks      46—49
Modulus of rubbers under constant stress, shear stress      46
Modulus of rubbers under constant stress, swollen rubbers      60
Modulus of rubbers under constant stress, tensile stress      43
Modulus, loss      167 168
Modulus, relaxation      166
Modulus, storage      167 168
Molecular friction factor      66—69 79—80
Molecular spring constant      40
Molecular weight averages      6—8
Molecular weight distribution, effect on elastic compliance      223—224
Molecular weight distribution, effect on heat generation      195—197
Molecular weight distribution, most probable distribution      8
Molecular weight, effect on heat generation      195—197
Monomer, definition      1
Mooney — Rivlin equation      54 59
Mooney — Rivlin plot      59
Morphology of crystals      313—317
Motion of a polymer molecule      129 ff. 148—151
Mullins softening effect      49—51
Network, breakdown      332—333
Network, elasticity      41—45
Network, formation      9—11
Network, junction motion      138 ff. 151 197
Non — Newtonian flow      218—222
Normal coordinate method      149
Nuclear magnetic resonance      287 ff.
Nuclear magnetic resonance, for polyisobutylene      290—291
Nuclear magnetic resonance, for polyvinyl chloride      292
Nuclear magnetic resonance, method      287—290
Nuclear magnetic resonance, relation to mechanical resonances      290—293
Nuclear magnetic resonance, relaxation times      293
Nuclear magnetic resonance, resonance line width      288—290
Number average molecular weight, definition      6—7
Number average molecular weight, effect on chain end correction      45—46
Number average molecular weight, effect on heat generation in rubbers      195—197
Permanent set      334—336
Properties of polymeric glasses      246 ff.
Radius of gyration      16 28—30
Random chain scission      333
Refractive index and glass temperature      99—100
Relaxation modulus      166
Relaxation time spectra      153 ff. 169 172
Relaxation time spectra, for linear polymers      207—211 215 216
Relaxation time spectra, for SBR      186
Relaxation time, nuclear magnetic      293
Relaxation time, of Maxwell element      165
Relaxation time, of polar molecules      281—283
Resilience, dynamic      191
Resonance peak half-width      193
Resonant modes of motion      132
Retardation time spectra      153 ff. 161—162 167—172
Retardation time spectra, for linear molecules      207—211 215 216
Retardation time spectra, for SBR      182—183
Retardation times of a molecule      136
Root mean square length      13—15
Root mean square length, any chain      15
Root mean square length, definition      13
Root mean square length, for $90^{\circ}$ bond angle chain      25
Root mean square length, for freely orienting chain      15
Root mean square length, table of      24
Root mean square length, tetrahedral chain      25—27
Rouse model      148 206 207
Rubber elasticity      37—60
Segmental friction factor, at high temperatures      91
Segmental friction factor, definition      66
Segmental friction factor, in terms of free volume      97
Segmental friction factor, relation to jump frequency      66 69
Segmental motion near the glass temperature      93—97
Shear degradation of rubber      336—341
Shift factor      143 146
Single Crystals      314—316
Sinusoidal vibration      155—168 (see also Vibration)
Size of polymer molecules      13—25
Size of polymer molecules, table of      24
Slippage factor      67
Softening by pre-stretching      50
Specific volume as function of molecular weight and temperature      115
Spherulites      316—317
Spring constant for a chain      40
Stark rubber      308
Statistics of rupture      225
Stick-slip tear      331
Storage compliance      156—159
Storage modulus      167
Stored energy function      43 59
Strength      see Tensile strength
Stress relaxation, and Maxwell element      163 ff.
Stress relaxation, during network scission      332—333
Stress relaxation, for linear molecules      208—209 215—216
Stress relaxation, intermittent vs. continuous      334
Stress relaxation, methods      183—187
Stress relaxation, of SBR      183 ff.
Stress-strain relation, filled stocks      46—47
Stress-strain relation, for swollen network      60
Stress-strain relation, under shear stress      46
Stress-strain relation, under tensile stress      43—44
Submolecule, definition      129
Superposition principle of Boltzmann      153 173 187
Superposition principle of Boltzmann, applied to creep-recovery experiment      203
Superposition principle, examples of use      144—145 176 180 184
Superposition principle, temperature-time      143 160
Swollen networks, elasticity of      60
Syndiotactic polymer      319
Tear strength      323—331
Tear strength, relation to tensile strength at break      328—333
Tearing energy      325—329
Tearing of rubber      323—331
Temperature-time superposition principle      143 160
Temperature-time superposition principle, examples of use      144—145 176 180 184
Tensile strength of plastics      262 ff.
Tensile strength of plastics, and jump frequency      266—267
1 2
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå