|
|
Авторизация |
|
|
Поиск по указателям |
|
|
|
|
|
|
|
|
|
|
Cameron P.J. — Combinatorics : Topics, Techniques, Algorithms |
|
|
Предметный указатель |
Graph, edge-weighted 162
Graph, incomparability 297 306
Graph, interval 305
Graph, latin square 268 270
Graph, line 297
Graph, Moore 181—184 335
Graph, N-free 306
Graph, null 160
Graph, perfect 296—298 306 333
Graph, permutation 306
Graph, Petersen 240—241 243 305—306
Graph, strongly regular 330
Graph, vertex-weighted 162
Gray code 169
Greatest lower bound 189
Greedy algorithm 165—166 184 204 208
Gros, L. 70
Group 60 225 passim
Group, abstract 226
Group, alternating 229
Group, automorphism 226 234 239—240 242 288 323
Group, cyclic 228 251
Group, dihedral 228—229 251
Group, domino 230—231 232 237
Group, imprimitive 238
Group, intransitive 232
Group, Klein 229
Group, Mathieu 288
Group, permutation 226 passim
Group, primitive 238
Group, symmetric 70 229
Group, transitive 232
Guthrie, P. 291
Hadamard design 269
Hadamard matrix 267—270 334
Hadamard's Theorem 267
Hadwiger's conjecture 334
Hajnal, A. 336
Hall's Condition 89
Hall's Marriage Theorem 88—89 179 185 205 207 243 292 318—319 324
Hall, M.Jr. 88 94 318 335
Hall, P. 88 243
Hamilton, W.R. 142 167
Hamiltonian circuit 168
Hamiltonian path 167
Hamming bound 279 290
Hamming code 284—285 290
Hamming distance 274
Hamming metric 274
Hamming space 274 288
Handshaking lemma 16 166
Harary, P. 335
Hasse diagram 188
Heawood, P. J. 304
Higman, G. 1
Hill, R. 336
Hirschfeld, J.W.P. 336
Hoban, R., ix 209 225 232
hole 298
Holton, D. A. 184
Homogeneous coordinates 137
Homogeneous graph 323
Hook length 217—218
Hubert's hotel 310
Hughes, D.R. 259 269 336
Hyperoval 146
Hyperplane 265—266
Ifrah, G. 7
Imprimitive group 238
Incidence algebra of poset 199
Incomparability graph 297 306
Indicator function 22
Induced subgraph 160 323
Induction 10
Integrity theorem 175
Intersecting family 99—100 208 334
Intersection 16
Interval graph 305
Intransitive group 232
Invariant relation (of group) 237
Involution 59—60 220
Irreflexive relation 35 160
Isbell, J. 335
ISETL 333
Jackson, I. 335
Jacobi's triple product identity 216—217 224
JI element of lattice 192
Johnson, D.S. 329
Johnson, S. 1
Join 189
Join-indecomposable 192
Jordan curve theorem 300
Jungnickel, D. 336
Kaliningrad 166
Keedwell, A.D. 336
Kempe 304
Keynes, J.M. 147
Kirkman system 108
Kirkman's schoolgirls 2 5 88 119—120 122
Kirkman, T.P. 107
Klein bottle 302
Klein group 229
Klein, E. 155
Knot 331 334
Koenig's Infinity Lemma 311—312 323—324
Koenig's Theorem 178 185 293
Koenig, D 337
Konigsberg 166—167
Kronecker product 268
Kronecker, L. 7
Kuratowski — Wagner Theorem 301
l.u.b. 189
Labelled structure 14 62 234
Lachlan — Woodrow Theorem 323
Lagrange's theorem 95 232
Lao Tzu 258
Latin rectangle 90
Latin square 87—88 90 passim 286 334
Latin square graph 268 270
Latin squares, orthogonal 95
Lattice 189
Lattice, Boolean 193 195
Lattice, distributive 191—193
Lattice, free boolean 195
Lattice, free distributive 194 208
Lattice, geometric 204
Lattice, power-set 189—198
Least upper bound 189
LeGuin, U.K. 325
Leibniz, G. 42
Lem, S. 1 310
Lenz, H. 336
Levin, G. 333
Lexicographic order 43
Line graph 297
Linear code 273 281—285 288—290
Linear extension of poset 190—191 199 314
Linear independence 203
Linear recurrence relation 56
Linear space 334
Liouville, J. 64
List colouring conjecture 334
Lloyd, E.K. 166 291
Llull, R. 27
Logarithm 12 54 83
Logic, first-order 308
Logic, prepositional 194
Loop 159
Lovasz — Muller Theorem 330
Lovasz, L. 335 336
| Lucas' Theorem 28
LYM technique 102
Macdonald, I. G. 210 218 336
MacWilliams, F.J. 336
Main problem of coding theory 278 334
Map colouring 291 303—305 313
Matching 178 292—293
Mate, A. 336
Mathieu group 288
Matrix, adjacency 181
Matrix, check 282
Matrix, doubly stochastic 94
Matrix, generator 282
Matrix, Hadamaid 267—270
Matrix, stochastic 94
Matroid 203—205 208
Matthews, P. 99
Max-flow min-cut theorem 174—176 185 294
Maximal element of poset 188 313
Maximum distance separable code 280 290
Maximum-likelihood decoding 277
McDiarmid, C. 64
MDS code 280 290
Meet 189
Membership test for group 236
Menger's Theorem 177
Metric 171 180 274
Minimal connector 164 171 185
Minimal counterexample 11
Minimal spanning tree 164
Minimum distance 275
Minimum weight 281
Minor of graph 301 333
Mirsky, L. 336
Moebius function 199—202 207 244
Moebius inversion 66 201—202 221
Moebius strip 302
Moebius, A. 291
MOLS 95 135 146
Monomial equivalence 289
Moore graph 181—184 335
Morgenstern, O. 21
Motzkin, T. . 147
Multigraph 160
Multiple edge 159
Mutually orthogonal Latin squares 95 135 146
N-free graph 306
Nagell's equation 286
Natural partial order (of partitions) 211
Nearest-neighbour decoding 275 277
Necklace 251
Netto system 118 125
Network 173 passim
Neumaier, A. 337
Newton's Theorem 222
Newton, I. 25 49
Non-deterministic polynomial time (NP) 328
Non-orientable surfaces 302—303
NP-completeness 329
Null graph 160
Odd permutation 84
Odometer Principle 9 18 41 169
Orbit 232 235
Orbit-counting lemma 81 246 passim
Order 36 46
Order of projective plane 131
Order, lexicographic 43
Order, linear 188
Order, natural (of partitions) 211
Order, partial 36 46 188
Order, reverse lexicographic 43 211
Order, total 36 188
Ordered pair 17
Ordinal numbers 309—310
Ore's Theorem 168
Orientable surfaces 302—303
Orthogonal array 281
Orthogonal Latin squares 95 286
Oval 139 146
Oxtoby, J.C. 322
Packing 115 276
Pairwise orthogonal Latin squares 95
Paley type (Hadamard matrix) 268 270
Palmer, E.M. 335
Pappus' theorem 133
Parallelism 134
Paris — Harrington Theorem 156
Parity check 282
Partial geometry 137
Partial matching 292—293
Partial order 36 46 187 188
Partial order, natural (of partitions) 211
Partial permutation 32 46—47
Partial preorder 36—38 46
Partial transversal 203
Particle number 216
Partition (of number) 209 passim 306
Partition (of set) 35
Partition function 210
Pascal 332
Pascal's triangle 25 79
Passant 139
Passive form of permutation 28—29
Path 161
Pentagon 183 187
Pentagonal number 213
Perfect code 279 285—288 335
Perfect graph 296—298 306 333
Perfect graph theorem 298
Perfect, H. 337
Permanent 94
Permutation 13 28 334
Permutation graph 306
Permutation group 226 passim 334
Permutation, even 84
Permutation, odd 84
Permutations and combinations 21 32
Perspective 128
Petersen graph 183—184 240—241 243 305—306
pie 57 75 passim 265 270
Pigeonhole Principle 147—149 155 156 312
Pinch, R. G. 336
Piper, F. C 259 336
Place-permutation 231
Plotkin bound 279 290
Plummer, M.D. 336
POLS 95
Polynomial growth 13 19
Polynomial time (P) 327
Polyommoes 334
Polytopes 334
POSET 187 passim
Poset, two-level 207
Power set 13 17
Power sum (symmetric) polynomial 221
Power-set lattice 189 198
Pre-partial order 36
Preorder 36 46 85
Prepositional Compactness Theorem 314—315 323—324
Priestley, H. A. 337
Primitive component 238
Primitive group 238
Principal down-set 191
Principle of inclusion and exclusion 57 75 Pafrim
Principle of Induction 10
Principle of the Supremum 156
Probabilistic method 153—154
Projective design 264
Projective geometry (or space) 129 189 265 289
Projective plane 102 131 186 265—266 302 334
|
|
|
Реклама |
|
|
|