Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Hastie T., Tibshirani R., Friedman J. — The Elements of Statistical Learning Data Mining, Inference and Prediction
Hastie T., Tibshirani R., Friedman J. — The Elements of Statistical Learning  Data Mining, Inference and Prediction



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: The Elements of Statistical Learning Data Mining, Inference and Prediction

Àâòîðû: Hastie T., Tibshirani R., Friedman J.

Àííîòàöèÿ:

During the past decade there has been an explosion in computation and information technology. With it has come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics.
Many of these tools have common underpinnings but are often expressed with different terminology. This book descibes theimprtant ideas in these areas ina common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a vluable resource for statisticians and anyone interested in data mining in science or industry.
The book's coverage is broad, from supervised learing (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting — the first comprehensive treatment of this topic in any book.
Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie wrote much of the statistical modeling software in S-PLUS and invented principal curves and surfaces. Tibshirani proposed the Lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, and projection pursuit.


ßçûê: en

Ðóáðèêà: Computer science/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2002

Êîëè÷åñòâî ñòðàíèö: 533

Äîáàâëåíà â êàòàëîã: 23.04.2006

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Jones, M.      144 148 155 368 514
Jooste, P.      100 520
Jordaan, P.      100 520
Jordan, M.      296 516 517
K medoid clustering      468—472
K-means clustering      412 461—465
K-nearest neighbor classifiers      415
Kabalin, J.      3 47 521
Karhunen — Loeve transformation (principal components)      62—63 66 485—491
Karush — Kuhn — Tucker conditions      110 374
Kaski, S.      485 503 517
Kaufman, L.      469 480 503 517 518
Kearns, M.      517
Kelly, C.      477 517
Kennard, R.W      60 75 516
Kent, J.      75 111 495 504 518
Kerkyachairan, G.      331 511
Kernel density classification      184
Kernel density estimation      182—189
Kernel function      183
Kernel methods      182—189
Kittier, J.V.      432 511
Knight, K.      255 521
Knot      117 283
Kohonen, T.      414 433 485 503 517
Kooperberg, C.      289 521
Kotze, J.      100 520
Kressel, Ulrich      517
Kriging      147
Krogh, A.      367 516
Kruskal — Shephard scaling      502
Kullback — Leibler distance      497
Lagrange multipliers      256
Lagus, K.      485 503 517
Laird, N..      255 400 511
Laplacian distribution      72
Lasso      64—65 69—72 330—331
Lawson, C.      75 517
Le Cun, Y.      362 363 365 366 368 517 520
Learning      1
Learning rate      354
Learning Vector Quantization      414
Least squares      11 32
Leave-one-out cross-validation      215
Leblanc, M.      255 517
Lee, W.      343 520
Left singular vectors      487
LeNet      363
Li, K.-C.      432 512
Life, ultimate meaning of      534
Likelihood function      229 237
Lin, H.      293 518
Lin, Y.      382 406 522
Linear basis expansion      115—124
Linear combination splits      273
Linear discriminant function      84—94
Linear methods for classification      79—114
Linear methods for regression      41—78
Linear models and least squares      11
Linear regression of an indicator matrix      81
Linear separability      105
Linear smoother      129
Link function      258
Little, R.      293 518
Littman, M.      504 510
Lloyd, S.P.      433 503 518
Loader, C.      183 190 518
Local likelihood      179
Local methods in high dimensions      22—27
Local minima      359
Local polynomial regression      171
Local regression      168 174
Localization in time and in frequency      149
Loess (local regression)      168 174
Log-odds ratio (logit)      96
Logistic (sigmoid) function      352
Logistic regression      95—104 261
Logit (log-odds ratio)      96
Loss function      18 21 193—195 308
Loss matrix      272
Lossless compression      467
Lossy compression      467
LVQ      see Learning Vector Quantization
Macnaughton Smith, P.      518
MacQueen, J.      433 503 518
Madigan, D.      222 255 518
Mahalanobis distance      392
Majority vote      249 299
Mannila, H.      442 443 503 509
MAP (maximum aposteriori) estimate      234
Mardia, K.V.      75 111 495 504 518
Margin      110 372
Market basket analysis      440 451
Markov chain Monte Carlo (MCMC) methods      243
MARS      see Multivariate adaptive regression splines
MART      see Multiple additive regression trees
Massart, D.      469 518
Maximum Likelihood Estimation      32 225
Maximum likelihood inference      229
McCulloch, C.E.      293 518
McCulloch, W.S.      367 518
McLachlan, Geoffrey J.      11 518
MCMC      see Markov Chain Monte Carlo Methods
McNeal, J.      3 47 521
MDL      see Minimum description length
Mean squared error      24 247
Memory-based method      415
Metropolis-Hastings algorithm      245
Michie, D.      89 390 422 518
Minimum description length (MDL)      208
Misclassification error      17 271
Missing data      240 293—294
Missing predictor values      293—294
Mixing proportions      189
Mixture discriminant analysis      399—405
Mixture modeling      188—189 236—240 399—405
Mixture of experts      290—292
Mixtures and the EM algorithm      236—240
Mockerr, L.G.      518
Mode seekers      459
Model averaging and stacking      250
Model combination      251
Model complexity      194—195
Model selection      195—196 203—204
Monte Carlo method      217 447
Morgan, James N.      296 518
Mother wavelet      152
Mukinomial distribution      98
Mulier, F      39 211 510
Multi-dimensional splines      138
Multi-edit algorithm      432
Multi-layer perceptron      358 362
Multi-resolution analysis      152
Multidimensional scaling      502—503
Multiple additive regression trees (MART)      322
Multiple minima      253 359
Multiple outcome shrinkage and selection      73
Multiple outputs      54 73 81—84
Multiple regression from simple univariate regression      50
Multivariate adaptive regression splines (MARS)      283—289
Multivariate nonparametric regression      395
Munro, S.      355 519
Murray, W.      75 519
Myles, J.P.      429 519
Nadaray — Watson estimate      166
Naive Bayes classifier      86 184—185
Natural cubic splines      120—121
Neal, R.      255 519
Nearest neighbor methods      415—436
Network diagram      351
Neural networks      347—370
Newton's method (Newton — Raphson procedure)      98—99
Nonparametric logistic regression      261—265
Normal (Gaussian) distribution      17 31
Normal equations      12
Nowlan, S.      296 516
Numerical optimization      319 353—354
Object dissimilarity      457—458
Oja, E.      496 497 498 504 516
Olshen, R.      219 270 272 296 331 405 510
Online algorithm      355
Optimal scoring      395—397 401—402
Optimal separating hyperplanes      108—110
Optimism of the training error rate      200—202
Ordered categorical (ordinal) predictor      10 456
Orthogonal predictors      51
Overfitting      194 200—203 324
Paatero, A.      485 503 517
Pace, R.Kelley      335 519
Palmer, R.G.      367 516
Parametric bootstrap      228
Parker, David      367 519
Partial dependence plots      333—334
Partial least squares      66—68
Parzen window      182
Pasting      279
Patient rule induction method (PRIM)      279—282 451—452
Peeling      279
Penalizatio      see regularization
Penalized discriminant analysis      397—398
Penalized polynomial regression      147
Penalized regression      34 59—65 147
Penalty matrix      128 163
Perception      350—370
Picard, D.      331 511
Piecewise polynomials and splines      36 119
Pitts, W.      367 518
Plastria, F.      469 518
Platt, J.      405 519
Poggio, T.      144 148 155 368 406 512 514
Pontil, M.      144 155 406 512
Posterior distribution      232
Posterior probability      206—207 232
Prediction accuracy      290
Prediction error      18
Predictive distribution      232
Prim      see patient rule induction method
Principal components      62—63 66—67 485—491
Principal components regression      66—67
Principal curves and surfaces      491—493
Principal points      491
Prior distribution      232—235
Projection pursuit      347—349 500
Projection pursuit regression      347—349
Prototype classifier      411—415
Prototype methods      411—415
Proximity matrices      455
Pruning      270
QR decomposition      53
Quadratic approximations and inference      102
Quadratic discriminant function      86 89
Quinlan, R.      273 296 519
Radial basis function (RBF) network      350
Radial basis functions      186—187 240 351
Raftery, A.E.      222 255 518
Ramsay, J.      155 519
Rao score test      103
Rao, C.R.      406 519
Rayleigh quotient      94
Receiver operating characteristic (ROC) curve      277—278
Reduced-rank linear discriminant analysis      91
Redwine, E.      3 47 521
Regression      11—13 41—78 174—178
Regression spline      120
Regularization      34 144—149
Regularized discriminant analysis      90—91
Representer of evaluation      145
Reproducing kernel Hilbert space      144—149
Reproducing property      145
Responsibilities      238—240
Rice, J.      477 517
Ridge regression      59—64
Ripley, B.D.      39 108 111 13 270 359 367 368 406 420 432 433 519
risk factor      100
Rissanen, Jorma      222 519
Robbins, H.      355 519
Robust fitting      308—310
Roosen, C.      519
Rosenblatt's perceptron learning algorithm      107
Rosenblatt, F.      80 106 367 520
Rousseauw, J.      100 520
Rousseeuw, P.      469 480 503 517
Rubin, D.      255 293 400 511 514 518
Rug plot      265
Rumelhart, D.      367 520
Saarela, A.      485 503 517
Salojaetrvi, J.      485 503 517
Sammon mapping      502
Scaling of the inputs      358
Schapire, R.      299 340 341 343 513 520
Schnitzler, C.      295 515
Schroeder, A.      514
Schwartz's criterion      206—207
Schwartz, G.      206 222 520
Score equations      98 229
Scott, D.      190 520
Seber, G.A.F      75 520
Sejnowski, T.      504 509
Self-consistency property      491—492
Self-organizing map (SOM)      480—484
Sensitivity of a test      277—278
Separating hyperplanes      108 371—373
Shao, J.      222 520
Shape averaging      434
Short, R.S.      429 520
Shrinkage methods      59—66
Shustek, L.J.      513
Shyu, M.      333 509
Sigmoid      352
Silverman, B.      155 157 190 295 296 514 515 519 520
Silvey, S.D.      254 520
Simard, P.      432 515 520
Similarity measure      see dissimilarity measure
Singer, Y.      343 520
Single index model      348
Singular value decomposition (SVD)      487—488
Singular values      487
Skin of the orange example      384—385
Slate, E.H.      293 518
Sliced inverse regression      432
Smith, A.      255 514
Smoother      115—134 165—173
Smoother matrix      129
Smoothing parameter      37 134—136 172—173
Smoothing spline      127—133
Soft clustering      463
Softmax function      351
SOM      see self-organizing map
Sonquist, John A.      296 518
Sparseness      149
Specificity of a test      277—278
Spector, P.      222 510
Spiegelhalter, D.      255 518 520
Spline, additive      259—260
Spline, cubic      127—128
Spline, cubic smoothing      127—128
Spline, interaction      382
Spline, regression      120
Spline, smoothing      127—133
Spline, thin plate      140
1 2 3
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå