Авторизация 
		         
		        
					
 
		          
		        
			          
		        
			        Поиск по указателям 
		         
		        
			        
					 
		          
		        
			          
			
			         
       		 
			          
                
                    
                        
                     
                  
		
			          
		        
			          
		
            
	     
	    
	    
            
		
                    Hastie T., Tibshirani R., Friedman J. — The Elements of Statistical Learning  Data Mining, Inference and Prediction 
                  
                
                    
                        
                            
                                
                                    Обсудите книгу на научном форуме    Нашли опечатку? 
 
                                
                                    Название:   The Elements of Statistical Learning  Data Mining, Inference and PredictionАвторы:   Hastie T., Tibshirani R., Friedman J.Аннотация:  During the past decade there has been an explosion in computation and information technology. With it has come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics.
Язык:  Рубрика:  Computer science /Статус предметного указателя:  Готов указатель с номерами страниц ed2k:   ed2k stats Год издания:  2002Количество страниц:  533Добавлена в каталог:  23.04.2006Операции:  Положить на полку  |
	 
	Скопировать ссылку для форума  | Скопировать ID 
                                 
                             
                        
                     
                 
                                                                
			          
                
                    Предметный указатель 
                  
                
                    
                        203 Abu-Mostafa, Y.S. 77 509 Activation function 350—352 Adaboost 299—309 Adaptive methods 383 Adaptive nearest neighbor methods 427—430 Adaptive wavelet filtering 157 Additive model 257—266 Adjusted response 259 Affine invariant average 434 Affine set 106 Agrawal, R. 442 443 503 509 AIC see Akaike information criterion Akaike information criterion (AIC) 203 Akaike, H. 222 509 Allen, D.M. 222 509 Analysis of deviance 102 Applications, aorta 178 Applications, bone 128 Applications, California housing 335—336 Applications, countries 468 Applications, document 485 Applications, galaxy 175 Applications, heart attack 122 181 Applications, marketing 444 Applications, microarray 5 462 485 Applications, nuclear magnetic resonance 150 Applications, ozone 175 Applications, prostate cancer 2 57 Applications, satellite image 422 Applications, spam 2 62—264 274 276 282 289 314 Applications, vowel 391 416 Applications, waveform 402 Applications, ZIP code 3 488—489 Association rules 444—447 451—453 Automatic selection of smoothing parameters 134 B-spline 160 Back-propagation 349 353—355 366—367 Backfitting procedure 259 Backward pass 354 Backward stepwise selection 55 Bagging 246—249 Barron, A.R 368 509 Barry, Ronald 335 519 Bartlett, P. 343 520 Basis expansions and regularization 115—164 Basis functions 117 161 163 283 289 Baskett, F. 513 Batch learning 355 Baum — Welch algorithm 236 Bayes classifier 21 Bayes factor 207 Bayes methods 206—207 231—236 Bayes rate 21 Bayesian information criterion (BIC) 206 Becker, R. 333 509 Bell, A. 504 509 Bellman, R.E. 22 510 Benade, A. 100 520 Bengio, Y. 363 366 368 517 Bentley, J. 513 Best, N. 255 520 Between-class covariance matrix 92 Bias 16 24 37 136 193 Bias-variance decomposition 24 37 193 Bias-variance tradeoff 37 193 Bibby, J.M. 75 111 495 504 518 BIC see Bayesian Information Criterion Bishop, C.M. 39 206 367 510 Boosting 299—346 Bootstrap 217 225—228 231 234—246 Bootstrap, relationship to Bayesian method 235 Bootstrap, relationship to maximum likelihood method 231 Boser, B. 362 368 517 Botha, J. 295 515 Bottom-up clustering 472—479 Bottou, L. 363 366 368 517 Breiman, L. 74 75 219 222 255 270 272 296 302 331 405 406 510 Brooks, R.J 521 Bruce, A. 155 510 BRUTO 266 385 Buja, A. 88 260 399 404 406 500 504 510 515 516 521 Bump hunting see patient rule induction method (PRIM) Bumping 253—254 Burges, C.J.C. 406 510 Canonical variates 392 Carlin, J. 255 514 CART see classification and regression trees Categoricalpredictors 10 271—272 Chambers, J. 295 510 Cherkassky, V. 39 211 510 Chui, C. 155 511 Clark, L.C. 293 518 Classical multidimensional scaling 502 Classification 21 79—114 266—278 371—384 Classification and regression trees (CART) 266—278 Cleveland, W. 333 509 Clustering 453—479 Clustering, agglomerative 475—479 Clustering, hierarchical 472—479 Clustering, K-means 461—462 Codebook 465 468 Combinatorial algorithms 460 Combining models 250—252 Committee methods 251 Comon, P. 504 511 Comparison of learning methods 312—314 Complete data 240 Complexity parameter 37 Condensing procedure 432 Conditional likelihood 31 Confusion matrix 263 Conjugate gradients 355 Convolutional networks 364 Cook, D. 500 521 Copas, J.B. 75 330 511 Cost complexity pruning 270 Cover, T.M. 222 417 433 511 Cox, D.R. 254 511 Cressie, Noel A.C. 511 Cross-entropy 270—271 Cross-validation 214—216 Csiszar, I. 255 511 Cubic smoothing spline 127—128 Cubic spline 127—128 Curse of dimensionality 22—27 Dale, M.B. 518 Dasarathy, B.V. 432 433 511 Data augmentation 240 Daubechies symmlet-8 wavelets       150 Daubechies, I. 155 511 de Boor, C. 155 511 Dean, .N 504 510 Decision boundary 13 15 16 22 Decision trees 266—278 Decoding step 467 Degrees of freedom in an additive model 264 Degrees of freedom in ridge regression 63 Degrees of freedom of a tree 297 Degrees of freedom of smoother matrices 129—130 134 Delta rule 355 Demmler — Reinsch basis for splines 132 Dempster, A. 255 400 511 Denker, J. 362 368 517 520 Density estimation 182—189 Deviance 102 271 Devijver, P.A. 432 511 Discrete variables 10 272—273 Discriminant adaptive nearest neighbor (DANN) classifier 427—432 Discriminant analysis 84—94 Discriminant coordinates 85 Discriminant functions 87—88 Dissimilarity measure 455—456 Donoho, D. 331 511 du Piessis, J. 100 520 Duan, N. 432 511 Dubes, R.C. 461 475 516 Duchamp, T. 512 Duda, R. 39 111 512 Dummy variables 10 Early stopping 355 Effective degrees of freedom 15 63 129—130 134 205 264 297 Effective number of parameters 15 63 129—130 134 205 264 297 Efron, B. 105 204 222 254 295 512 Eigenvalues of a smoother matrix 130 EM algorithm 236—242 EM algorithm as a maximization-maximization procedure 241 EM algorithm for two component Gaussian mixture 236 Encoder 466—467 entropy 271 Equivalent kernel 133 Error rate 193—203 Estimates of in-sample prediction error 203 Evgeniou, T. 144 155 406 512 Expectation-maximization algorithm see EM algorithm Exponential loss and AdaBoost 305 Extra-sample error 202 Fan, J. 190 512 Feature extraction 126 features 1 Feed-forward neural networks 350—366 Ferreira, J. 100 520 Finkel, R. 513 Fisher's linear discriminant 84—94 390 Fisher, N. 296 514 Fisher, R.A. 406 512 Fix, E. 433 512 Flexible discriminant analysis 391—396 Flury, B. 504 512 521 Forgy, E.W. 503 512 Forward pass algorithm 353 Forward selection 55 Forward stagewise additive modeling 304 Fourier transform 144 Frank, I. 70 75 512 Freiha, F. 3 47 521 Frequentist methods 231 Freund, Y. 299 341 343 513 520 Friedman, J. 39 70 74 75 90 219 223 270 272 296 301 307 326 331 333 335 343 344 367 405 429 500 504 510 512 513 Fukunaga, K. 429 520 Function approximation 28—36 Furnival, G. 55 514 Gao, H. 155 510 Gap statistic 472 Gating networks 290—291 Gauss — Markov theorem 49—50 Gauss — Newton method 349 Gaussian (normal) distribution 17 Gaussian mixtures 237 416 444 462 Gaussian radial basis functions 186 GCV see Generalized cross-validation Gelland, A. 255 514 Gelman, A. 255 514 GEM (generalized EM) 241 Geman, D. 255 514 Geman, S. 255 514 Generalization error 194 Generalization performance 194 Generalized additive model 257—265 Generalized association rules 449—450 Generalized cross-validation 216 Generalized linear models 103 Generalizing linear discriminant analysis 390 Gersho, A. 466 468 480 503 514 Gibbs sampler 243—244 Gibbs sampler for mixtures 244 Gijbels, I. 190 512 Gilks, W. 255 520 Gill, P.E. 75 519 Gini index 271 Girosi, F. 144 148 155 368 514 Global dimension reduction for nearest neighbors 431 Golub, G. 222 296 514 Gordon, A.D. 503 514 Gradient boosting 320 Gradient descent 320 353—354 Gray, R. 466 468 480 503 514 Green, P. 155 157 295 515 Greenacre, M. 515 Haar basis function 150 Haffner, P. 363 366 368 517 Hall, P. 254 515 Hand, D.J. 111 429 515 519 Hansen, M. 289 521 Hansen, R. 75 517 Hart, P. 39 111 417 432 433 511 512 515 Hartigan, J.A. 462 503 515 Hastie, T. 88 113 190 222 260 261 262 266 295 301 307 343 344 382 385 399 402 404 406 429 431 432 433 472 504 510 514 515 516 519 Hat matrix 44 Hathaway, Richard J. 255 516 Heath, M. 222 514 Hebb, D.O. 367 516 Helix 506 Henderson, D. 362 368 517 Herman, A. 295 515 Hertz, J. 367 516 Hessian matrix 99 Hidden units 351—352 Hierarchical clustering 472—479 Hierarchical mixtures of experts 290—292 Hinkley, D.V. 254 511 Hinton, G. 255 296 367 516 519 520 hints 77 Hodges, J.L. 433 512 Hoerl, A.E. 60 75 516 Hoff, M.E. 355 367 522 Howard, R.E. 362 368 517 Hubbard, W. 362 368 517 Huber, P. 311 367 386 504 516 Hyperplane, separating 108—110 Hyvaerinen, A. 496 497 498 504 516 ICA see independent components analysis Ihaka, R. 406 510 In-sample prediction error 203 Incomplete data 293 Independent components analysis 494—501 Independent variables 9 Indicator response matrix 81 Inference 225—255 Information Fisher 230 Information theory 208 496 Information, observed 239 Inputs 10 Inskip, H. 255 520 Instability of trees 274 intercept 11 Invariance manifold 423 Invariant metric 423 Inverse wavelet transform 153 IRLS see iteratively reweighted least squares Irreducible error 197 Iteratively reweighted least squares (IRLS) 99 Izenman, A. 516 Jackel, L.D. 362 368 517 Jacobs, R. 296 516 517 Jain, A.K. 461 475 516 Jancey, R.C. 503 516 Jensen's inequality 255 Johnstone, I. 3 47 331 511 521 Jones, L. 368 517 
                            
                     
                  
			Реклама