Авторизация
Поиск по указателям
Hastie T., Tibshirani R., Friedman J. — The Elements of Statistical Learning Data Mining, Inference and Prediction
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: The Elements of Statistical Learning Data Mining, Inference and Prediction
Авторы: Hastie T., Tibshirani R., Friedman J.
Аннотация: During the past decade there has been an explosion in computation and information technology. With it has come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics.
Many of these tools have common underpinnings but are often expressed with different terminology. This book descibes theimprtant ideas in these areas ina common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a vluable resource for statisticians and anyone interested in data mining in science or industry.
The book's coverage is broad, from supervised learing (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting — the first comprehensive treatment of this topic in any book.
Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie wrote much of the statistical modeling software in S-PLUS and invented principal curves and surfaces. Tibshirani proposed the Lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, and projection pursuit.
Язык:
Рубрика: Computer science /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 2002
Количество страниц: 533
Добавлена в каталог: 23.04.2006
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
statistic 203
Abu-Mostafa, Y.S. 77 509
Activation function 350—352
Adaboost 299—309
Adaptive methods 383
Adaptive nearest neighbor methods 427—430
Adaptive wavelet filtering 157
Additive model 257—266
Adjusted response 259
Affine invariant average 434
Affine set 106
Agrawal, R. 442 443 503 509
AIC see Akaike information criterion
Akaike information criterion (AIC) 203
Akaike, H. 222 509
Allen, D.M. 222 509
Analysis of deviance 102
Applications, aorta 178
Applications, bone 128
Applications, California housing 335—336
Applications, countries 468
Applications, document 485
Applications, galaxy 175
Applications, heart attack 122 181
Applications, marketing 444
Applications, microarray 5 462 485
Applications, nuclear magnetic resonance 150
Applications, ozone 175
Applications, prostate cancer 2 57
Applications, satellite image 422
Applications, spam 2 62—264 274 276 282 289 314
Applications, vowel 391 416
Applications, waveform 402
Applications, ZIP code 3 488—489
Association rules 444—447 451—453
Automatic selection of smoothing parameters 134
B-spline 160
Back-propagation 349 353—355 366—367
Backfitting procedure 259
Backward pass 354
Backward stepwise selection 55
Bagging 246—249
Barron, A.R 368 509
Barry, Ronald 335 519
Bartlett, P. 343 520
Basis expansions and regularization 115—164
Basis functions 117 161 163 283 289
Baskett, F. 513
Batch learning 355
Baum — Welch algorithm 236
Bayes classifier 21
Bayes factor 207
Bayes methods 206—207 231—236
Bayes rate 21
Bayesian information criterion (BIC) 206
Becker, R. 333 509
Bell, A. 504 509
Bellman, R.E. 22 510
Benade, A. 100 520
Bengio, Y. 363 366 368 517
Bentley, J. 513
Best, N. 255 520
Between-class covariance matrix 92
Bias 16 24 37 136 193
Bias-variance decomposition 24 37 193
Bias-variance tradeoff 37 193
Bibby, J.M. 75 111 495 504 518
BIC see Bayesian Information Criterion
Bishop, C.M. 39 206 367 510
Boosting 299—346
Bootstrap 217 225—228 231 234—246
Bootstrap, relationship to Bayesian method 235
Bootstrap, relationship to maximum likelihood method 231
Boser, B. 362 368 517
Botha, J. 295 515
Bottom-up clustering 472—479
Bottou, L. 363 366 368 517
Breiman, L. 74 75 219 222 255 270 272 296 302 331 405 406 510
Brooks, R.J 521
Bruce, A. 155 510
BRUTO 266 385
Buja, A. 88 260 399 404 406 500 504 510 515 516 521
Bump hunting see patient rule induction method (PRIM)
Bumping 253—254
Burges, C.J.C. 406 510
Canonical variates 392
Carlin, J. 255 514
CART see classification and regression trees
Categoricalpredictors 10 271—272
Chambers, J. 295 510
Cherkassky, V. 39 211 510
Chui, C. 155 511
Clark, L.C. 293 518
Classical multidimensional scaling 502
Classification 21 79—114 266—278 371—384
Classification and regression trees (CART) 266—278
Cleveland, W. 333 509
Clustering 453—479
Clustering, agglomerative 475—479
Clustering, hierarchical 472—479
Clustering, K-means 461—462
Codebook 465 468
Combinatorial algorithms 460
Combining models 250—252
Committee methods 251
Comon, P. 504 511
Comparison of learning methods 312—314
Complete data 240
Complexity parameter 37
Condensing procedure 432
Conditional likelihood 31
Confusion matrix 263
Conjugate gradients 355
Convolutional networks 364
Cook, D. 500 521
Copas, J.B. 75 330 511
Cost complexity pruning 270
Cover, T.M. 222 417 433 511
Cox, D.R. 254 511
Cressie, Noel A.C. 511
Cross-entropy 270—271
Cross-validation 214—216
Csiszar, I. 255 511
Cubic smoothing spline 127—128
Cubic spline 127—128
Curse of dimensionality 22—27
Dale, M.B. 518
Dasarathy, B.V. 432 433 511
Data augmentation 240
Daubechies symmlet-8 wavelets 150
Daubechies, I. 155 511
de Boor, C. 155 511
Dean, .N 504 510
Decision boundary 13 15 16 22
Decision trees 266—278
Decoding step 467
Degrees of freedom in an additive model 264
Degrees of freedom in ridge regression 63
Degrees of freedom of a tree 297
Degrees of freedom of smoother matrices 129—130 134
Delta rule 355
Demmler — Reinsch basis for splines 132
Dempster, A. 255 400 511
Denker, J. 362 368 517 520
Density estimation 182—189
Deviance 102 271
Devijver, P.A. 432 511
Discrete variables 10 272—273
Discriminant adaptive nearest neighbor (DANN) classifier 427—432
Discriminant analysis 84—94
Discriminant coordinates 85
Discriminant functions 87—88
Dissimilarity measure 455—456
Donoho, D. 331 511
du Piessis, J. 100 520
Duan, N. 432 511
Dubes, R.C. 461 475 516
Duchamp, T. 512
Duda, R. 39 111 512
Dummy variables 10
Early stopping 355
Effective degrees of freedom 15 63 129—130 134 205 264 297
Effective number of parameters 15 63 129—130 134 205 264 297
Efron, B. 105 204 222 254 295 512
Eigenvalues of a smoother matrix 130
EM algorithm 236—242
EM algorithm as a maximization-maximization procedure 241
EM algorithm for two component Gaussian mixture 236
Encoder 466—467
entropy 271
Equivalent kernel 133
Error rate 193—203
Estimates of in-sample prediction error 203
Evgeniou, T. 144 155 406 512
Expectation-maximization algorithm see EM algorithm
Exponential loss and AdaBoost 305
Extra-sample error 202
Fan, J. 190 512
Feature extraction 126
features 1
Feed-forward neural networks 350—366
Ferreira, J. 100 520
Finkel, R. 513
Fisher's linear discriminant 84—94 390
Fisher, N. 296 514
Fisher, R.A. 406 512
Fix, E. 433 512
Flexible discriminant analysis 391—396
Flury, B. 504 512 521
Forgy, E.W. 503 512
Forward pass algorithm 353
Forward selection 55
Forward stagewise additive modeling 304
Fourier transform 144
Frank, I. 70 75 512
Freiha, F. 3 47 521
Frequentist methods 231
Freund, Y. 299 341 343 513 520
Friedman, J. 39 70 74 75 90 219 223 270 272 296 301 307 326 331 333 335 343 344 367 405 429 500 504 510 512 513
Fukunaga, K. 429 520
Function approximation 28—36
Furnival, G. 55 514
Gao, H. 155 510
Gap statistic 472
Gating networks 290—291
Gauss — Markov theorem 49—50
Gauss — Newton method 349
Gaussian (normal) distribution 17
Gaussian mixtures 237 416 444 462
Gaussian radial basis functions 186
GCV see Generalized cross-validation
Gelland, A. 255 514
Gelman, A. 255 514
GEM (generalized EM) 241
Geman, D. 255 514
Geman, S. 255 514
Generalization error 194
Generalization performance 194
Generalized additive model 257—265
Generalized association rules 449—450
Generalized cross-validation 216
Generalized linear models 103
Generalizing linear discriminant analysis 390
Gersho, A. 466 468 480 503 514
Gibbs sampler 243—244
Gibbs sampler for mixtures 244
Gijbels, I. 190 512
Gilks, W. 255 520
Gill, P.E. 75 519
Gini index 271
Girosi, F. 144 148 155 368 514
Global dimension reduction for nearest neighbors 431
Golub, G. 222 296 514
Gordon, A.D. 503 514
Gradient boosting 320
Gradient descent 320 353—354
Gray, R. 466 468 480 503 514
Green, P. 155 157 295 515
Greenacre, M. 515
Haar basis function 150
Haffner, P. 363 366 368 517
Hall, P. 254 515
Hand, D.J. 111 429 515 519
Hansen, M. 289 521
Hansen, R. 75 517
Hart, P. 39 111 417 432 433 511 512 515
Hartigan, J.A. 462 503 515
Hastie, T. 88 113 190 222 260 261 262 266 295 301 307 343 344 382 385 399 402 404 406 429 431 432 433 472 504 510 514 515 516 519
Hat matrix 44
Hathaway, Richard J. 255 516
Heath, M. 222 514
Hebb, D.O. 367 516
Helix 506
Henderson, D. 362 368 517
Herman, A. 295 515
Hertz, J. 367 516
Hessian matrix 99
Hidden units 351—352
Hierarchical clustering 472—479
Hierarchical mixtures of experts 290—292
Hinkley, D.V. 254 511
Hinton, G. 255 296 367 516 519 520
hints 77
Hodges, J.L. 433 512
Hoerl, A.E. 60 75 516
Hoff, M.E. 355 367 522
Howard, R.E. 362 368 517
Hubbard, W. 362 368 517
Huber, P. 311 367 386 504 516
Hyperplane, separating 108—110
Hyvaerinen, A. 496 497 498 504 516
ICA see independent components analysis
Ihaka, R. 406 510
In-sample prediction error 203
Incomplete data 293
Independent components analysis 494—501
Independent variables 9
Indicator response matrix 81
Inference 225—255
Information Fisher 230
Information theory 208 496
Information, observed 239
Inputs 10
Inskip, H. 255 520
Instability of trees 274
intercept 11
Invariance manifold 423
Invariant metric 423
Inverse wavelet transform 153
IRLS see iteratively reweighted least squares
Irreducible error 197
Iteratively reweighted least squares (IRLS) 99
Izenman, A. 516
Jackel, L.D. 362 368 517
Jacobs, R. 296 516 517
Jain, A.K. 461 475 516
Jancey, R.C. 503 516
Jensen's inequality 255
Johnstone, I. 3 47 331 511 521
Jones, L. 368 517
Реклама