| 
		        
			        |  |  
			        |  |  
					| Авторизация |  
					|  |  
			        |  |  
			        | Поиск по указателям |  
			        | 
 |  
			        |  |  
			        |  |  
			        |  |  
                    |  |  
			        |  |  
			        |  |  |  | 
		|  |  
                    | Reid L.W. — The Elements of the Theory of Algebraic Numbers |  
                    |  |  
			        |  |  
                    | Предметный указатель |  
                    | | 0-function, expression for power of prime ideal      359 0-function, for ideals, definition      358
 0-function, general expression      38 44 53 359-362 366 367
 0-function, in k(
  )      185-188 0-function, in R, definition      37
 0-function, of higher order      54 367
 0-function, product theorem      45 360 361
 0-function, summation theorem      46 75 362 363 367
 Ambiguous ideal      347
 Appertains, exponent to which an integer      99 393
 Associated integers, in k(
  )      163 Associated integers, in k(
  )      223 Associated integers, in k(
  )      246 Associated integers, in R      9;
 Basis of conjugate ideals      301
 Basis of ideals      293-295
 Basis, of ideal      293-295
 Basis, of ideal, determination      351-355
 Basis, of k(
  )      159-161 Basis, of k(
  ))      220 Basis, of k(
  )      232 Basis, of k(
  )      245 Basis, of k(
  )      284-287 Basis, of k(
  ), determination      289—292 Binomial congruences      110-112
 Biquadratic residues and reciprocity law      205-217
 Canonical basis of ideals      294
 Character of an integer, biquadratic      209 212
 Character of an integer, quadratic, in k(
  )      212 Character of an integer, quadratic, in R      121
 Class number of a realm is finite      437
 Class number of a realm, definition      434
 Class number of a realm, determination      437-448 451
 Classes, ideal, definition      432
 Classification of the numbers of an ideal with respect to another ideal      326-330
 Common divisor of ideals      303
 Congruences in k(
  )      180 Congruences of condition      59-61 190 369-372
 Congruences of first degree in one unknown      68-70
 Congruences of nth degree in one unknown, preliminary discussion      66-68 374 375
 Congruences of second degree with one unknown      119-121
 Congruences of two polynomials      57 370
 Congruences,
  114-116 Congruences,
  -1  90 387 388 Congruences, common roots      92 93 389
 Congruences, composite modulus      95-97 391 392
 Congruences, definition      31 297 323
 Congruences, determination      93 94 386
 Congruences, elementary theorems      32-37 323-326
 Congruences, equivalent systems      64;
 Congruences, Euler’s criterion      115
 Congruences, limit to number of roots      89 386
 Congruences, multiple roots, definition      89 386
 Congruences, primitive and imprimitive roots      111
 Congruences, root      66 374
 Congruences, solution of $x^{1}\equiv -1, mod p, by means of Wilson’s theorem      129 130
 Congruences, transformations      62-64 372 374
 Congruences, with prime modulus      88-90 385-387
 Conjugate ideals      301
 Conjugate, numbers      4
 Conjugate, realm      4
 Dirichlet’s theorem regarding infinity of primes in an arithmetical progression      11
 Discriminant, of k(
  )      161 Discriminant, of k(
  )      221 Discriminant, of k(
  )      245 Discriminant, of k(
  )      232 Discriminant, of k(
  )      287 288 Discriminant, of number      284
 Divisibility of ideals      263 303
 Divisor, greatest common, discussion of definition      252
 Divisor, greatest common, in k(
  )      173 Divisor, greatest common, in R      16 18 25
 Divisor, greatest common, of two ideals      310-313 318
 Divisors, of integers in R, number of      23
 Divisors, of integers in R, sum of      24;
 Divisors, of of ideal, number of      318
 Equality of ideals      258 259 302
 Equivalence of ideals      427-431
 Equivalence of ideals in narrower sense      431
 Equivalent congruences      62-64 372 373
 Eratosthenes, sieve of      10
 Euler's criterion for solvability of
  115 122 Factorization of a rational prime determined by (d/p), in k(
  )      179 Factorization of a rational prime determined by (d/p), in k(
  )      229 Factorization of a rational prime determined by (d/p), in k(
  )      347 348 Fermat’s theorem      57
 Fermat’s theorem as generalized by Euler      57
 Fermat’s theorem, analogue for ideals      368 369
 Fermat’s theorem, analogue for k(
  )      189 Frequency of the rational primes      11
 Galois realm      281
 Gauss’ Lemma      130
 General algebraic integers      1 275-279
 Generation of realm      3
 Ideal numbers, nature explained      254-257
 Ideal numbers, necessity for      253
 Ideals, definition      257 293
 Ideals, determination of basis      298—301
 Ideals, introduction of numbers into and omission from symbol      258 295 296
 Ideals, numbers defining      295
 Ideals, principal and non-principal      260 261 297
 Imprimitive numbers      see primitive numbers
 Incongruent numbers, complete system of, in k(
  )      182-185 Incongruent numbers, complete system of, in k(
  )      326 Incongruent numbers, complete system of, in R      34
 Index, of a power      106 399
 Index, of a product      106 399
 Indices, definition      105 399
 Indices, solution of congruences by means of      108—110 400-402
 Indices, system of      106 399
 Integers, absolute value in R      7 33
 Integers, of k(
  )      157 Integers, of k(
  )      219 Integers, of k(
  )      245 Integers, of k(
  )      231 Integers, of k(
  )      284-287 Integers, of R      7 23
 Legendre’s symbol      127
 Multiple, least common, in R      25
 Multiple, least common, of two ideals      310-312 318
 Multiplication of ideals      261 262 302 303
 Non-equivalent ideals, complete system of      434
 Norm of ideals      326-338 351
 Norm, of a number, determination      351
 Norm, of a number, in k(
  )      156 Norm, of a number, in k(
  )      218 221 
 | Norm, of a number, in k(  )      245 Norm, of a number, in k(
  )      231 Norm, of a number, in k(
  )      283 Norm, of a number, of an ideal, definition      326 337
 Norm, of a number, value      330
 Norm, of a prime ideal      338
 Norm, of a principal ideal      337
 Norm, of a product of ideals      334
 Number class, ideal modulus      324
 Number class, rational modulus      32 33
 Numbers of ideals      293
 Numbers, algebraic, conjugate      4
 Numbers, algebraic, definition      1
 Numbers, algebraic, degree of      1
 Numbers, algebraic, of k(
  )      155 Numbers, algebraic, of k(
  )      1 218 Numbers, algebraic, of k(
  )      245 Numbers, algebraic, of k(
  )      231 Numbers, algebraic, of k(
  )      281 Numbers, algebraic, of R      7
 Numbers, algebraic, of the general realm      271-279
 Numbers, algebraic, rational equation of lowest degree satisfied by      2 273
 Pell’s equation      423-426
 Polynomials in a single variable      268-271
 Polynomials with respect to a prime modulus, reduced      62
 Polynomials, associated      77 381
 Polynomials, common divisor of      76 380
 Polynomials, common multiple of      76 380
 Polynomials, congruence with respect to a double modulus      81
 Polynomials, degree of      76
 Polynomials, determination of prime      78 381 382
 Polynomials, divisibility of      76 380
 Polynomials, division of one by another      382
 Polynomials, primary      78 381
 Polynomials, prime      78 381
 Polynomials, unique factorization theorem for      82-87 382-385
 Polynomials, unit      77 381
 Power of a prime by which
  is divisible      26 Primary integers of k(
  )      193-196 Prime factors, resolution of an ideal into      348-350
 Prime ideals      263-265 304
 Prime ideals, determination and classification      339-348
 Prime ideals, of k(
  )      263-265 Prime ideals, of k(
  ), definition      304 Prime numbers, infinite in number      10
 Prime numbers, of k(
  ), classification      177 Prime numbers, of k(
  ), definition      165 Prime numbers, of k(
  ), classification      227-230 Prime numbers, of k(
  ), definition      223 Prime numbers, of k(
  )      246 247 Prime numbers, of k(
  ), classification      238-240 Prime numbers, of k(
  ), definition      235 Prime numbers, of R, definition      9
 Primitive numbers, of k(
  )      157 Primitive numbers, of k(
  )      218 Primitive numbers, of k(
  )      282 283 Primitive numbers, of the general realm      274 275;
 Primitive numbers, with respect to a prime ideal modulus      398
 Primitive root, definition      100
 Primitive root, determination      112
 Primitive root, of prime of form
  151 Primitive root, of prime of form
  is 2      152 Principal class      432
 Product of classes      432
 Realm, conjugate      4
 Realm, definition      3
 Realm, degree      4
 Realm, generation      3
 Realm, number defining      4 280
 Realm, number generating      4
 Reciprocal classes      434
 Reciprocity law, determination of value of (a/p) by means of      144
 Reciprocity law, for biquadratic residues      210 215-217
 Reciprocity law, for quadratic residues, in k(
  )      201-205 Reciprocity law, for quadratic residues, in R      135
 Reciprocity law, other applications of      149
 Residue system, complete, in k(
  )      182-185 Residue system, complete, in R      33 34
 Residue system, complete,in k(
  )      326 Residue system, reduced, in k(
  )      185 Residue system, reduced, in k(
  )      358 Residue system, reduced, in R      37
 Residue, odd prime moduli of which an integer is a quadratic      128 145 147
 Residue, prime moduli of which 2 is a quadratic      133
 Residue, prime moduli of which — 1, is a quadratic      128
 Residues of powers, complete system of      98 393
 Residues of powers, definition      98 392
 Residues of powers, law of periodicity      100
 Residues, biquadratic      205-217
 Residues, cubic      250
 Residues, determination of quadratic      124
 Residues, n-ic      116
 Residues, quadratic non-      121
 Residues, quadratic, in k(
  )      196-201 Residues, quadratic, in R      121
 Residues, with respect to a series of moduli, integer having certain      70
 Rummer’s ideal numbers      267
 Sub-realm      157
 Symbol of ideals      257 295
 Symbol, Legendre’s      127
 Symbol, Legendre’s for ideal      257 295
 Unique factorization theorem, for ideals in k(
  )      305-317 Unique factorization theorem, graphical discussion of      169
 Unique factorization theorem, in k(
  )      167 174 Unique factorization theorem, in k(
  )      226 Unique factorization theorem, in k(
  ), failure of      247-253 Unique factorization theorem, in k(
  )      236 237; Unique factorization theorem, in R      12
 Unique factorization theorem, necessity for      253
 Unique factorization theorem, realms in which original method of proof holds      248-250
 Unique factorization theorem, restoration in terms of ideal factors      265 266
 Unit ideal, of k(
  )      304 Unit ideal, of k(
  )      263 Unit, fundamental, determination      420-426
 Unit, fundamental, of k(
  )      233 Unit, fundamental, of k(
  ), definition      420 Units, of k(
  )      163 Units, of k(
  )      222 Units, of k(
  )      246 Units, of k(
  )      232-235 Units, of k(
  ), definition      403 Units, of R      8
 Units, realm imaginary      404
 Units, realm real      405-426
 Wilson’s Theorem      91
 Wilson’s theorem analogue for ideals      388 389
 Wilson’s theorem as generalized by Gauss      91
 
 | 
 |  |  |  | Реклама |  |  |  |  |  |