Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Guggenheimer H.W. — Plane geometry and its groups
Guggenheimer H.W. — Plane geometry and its groups



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Plane geometry and its groups

Автор: Guggenheimer H.W.

Аннотация:

In this book the main theorems of plane euclidean geometry are proved on a university level. In the opinion of the writer, a reasonable training of high-school teachers must present them with a good working knowledge of geometry before starting to speak about foundations, i.e., about geometry.
The approach to geometry chosen in this book goes back to some papers by Ch. Wiener in the early 1890's. In particular also, I am indebted to the great book on plane geometry by Jacques Hadamard, and to modern works by G. Thomsen, H. Freudenthal, and F. Bachmann. Freudenthal has remarked that geometry today suffers from a low level of formalization as compared to other parts of mathematics. I am trying to remedy the situation by the use of a consistent formalism which is in keeping with the notations both of set theory and of traditional geometry. The deviations from the usual notations are kept to a minimum. Sometimes, however, they are unavoidable; for example, to untangle the different notions of angle that appear in elementary geometry, or, to distinguish between the point set of a segment and the vector which is its length.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1967

Количество страниц: 297

Добавлена в каталог: 26.07.2013

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Pole, of elliptic line      254
Polygon      44
Polygon, tangential      117 191
Pontrjagin, L.S.      267
Power, of point for circle      147
Product, of maps      8
Projection      16
Projection, stereographic      207 257
Quadrilateral      44
Quadrilateral, complete      145
Quadrilateral, tangential      89
RADIUS      85
Ratio, of division      115
Ratio, of homothety      152
Ray      9
Reflection, in circle      200
Reflection, in elliptic line      252
Reflection, in elliptic point      255
Reflection, in hyperbolic line      225
Reflection, in hyperbolic point      231
Reflection, in line      7 262
Reflection, in pair of points      210
Reflection, in point      35
Rotation      29
Rotation about pair of points      210
Rotation, hyperbolic      231
Rouche, E.      267
Schopp, J.      277
Segment      3
Self-dual      256
Side      4
Similar      158
Similitude      158
Similitude, direct      159
Similitude, indirect      159
Simson line      98
Sir Oppenheim, A.      vii 186 267
Squaring, of circle      34
Steinig, J.      267
Sturm, R.      vii 284
Subgroup      62
Subgroup, conjugate      66
Subgroup, normal      66
Subset      2
Substitution      221
Support, line of      85
Symmedian      169
Symmetry, axis of      40
Symmetry, center of      40
Symmetry, point      40
Tangent      85
Theorem, of Ceva      142
Theorem, of Desargues, affine      101
Theorem, of Desargues, converse      103
Theorem, of Desargues, general      138
Theorem, of Desargues, little      101
Theorem, of gnomon      107
Theorem, of Menelaus      137 158
Theorem, of Menelaus, generalized      138
Theorem, of Pappus, affine      100
Theorem, of Pappus, general      138
Theorem, of Pappus, little      106
Theorem, of Pascal      104
Theorem, of Pasch      5
Theorem, of Ptolemy      220
Theorem, of Ptolemy, second      222
Theorem, of Pythagoras      119
Theorem, of Stewart      123
Theorem, of Three Reflections      26 209
Theorem, of Three Reflections, hyperbolic      231
Thomsen's Relation      55
Thomsen, G.      v 267
Tiling      73
Transformation      8 66
Transformation, circular      208
Transformation, horocycllc      210
Transformation, translatory      210
Transitive group      70
Translation      41 60
Translation, hyperbolic      232
triangle      4
Triangle, associated      165
Triangle, asymptotic      238
Triangle, Brocard's first      169
Triangle, Brocard's second      169
Triangle, complete      4
Triangle, equilateral      57
Triangle, isosceles      20
Triangle, orthic      165
Triangle, pedal      170
Triangle, polar      258
Triangle, reflection      28
Triangle, right      24
Triangle, tangential      166
Trigonometry      130
Trisection, of angle      34
Turn      181
union      2
UNIT      59
Unsolvable      34
van Ijzeren, J.      266
Vector      42
Vertex, of angle      9
Vertex, of polygon      44
Vertex, of ray      9
Vertex, of triangle      4
Vertices, opposite      145
Wiener, Ch.      v
Yaglom, I.M.      267
Zassenhaus, H.      267
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте