Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Husemoeller D. — Elliptic curves
Husemoeller D. — Elliptic curves



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Elliptic curves

Автор: Husemoeller D.

Аннотация:

This book is an introduction to the theory of elliptic curves, ranging from its most elementary aspects to current research. The first part, which grew out of Tate's Haverford lectures, covers the elementary arithmetic theory of elliptic curves over the rationals. The next two chapters recast the arguments used in the proof of the Mordell theorem into the context of Galois cohomology and descent theory. This is followed by three chapters on the analytic theory of elliptic curves, including such topics as elliptic functions, theta functions, and modular functions. Next, the theory of endomorphisms and elliptic curves over infinite and local fields are discussed. The book then continues by providing a survey of results in the arithmetic theory, especially those related to the conjecture of the Birch and Swinnerton-Dyer. This new edition contains three new chapters which explore recent directions and extensions of the theory of elliptic curves and the addition of two new appendices. The first appendix, written by Stefan Theisan, examines the role of Calabi-Yau manifolds in string theory, while the second, by Otto Forster, discusses the use of elliptic curves in computing theory and coding theory. Dale Husemöller is a member of the faculty at the Max Planck Institute of Mathematics in Bonn.


Язык: en

Рубрика: Математика/Алгебра/Алгебраическая геометрия/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: second edition

Год издания: 2004

Количество страниц: 487

Добавлена в каталог: 14.03.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
K3-surface      345 346 379 390 395
Kahler form      354
Kahler manifolds      346
Kahler metric      345 353
Kahler potentials      354
Kaluza — Klein excitation      410
Katz      312
Key idea of Wiles      340
Kummer sequence      154 373
l-division points      335
L-function      316
L-function of a modular form      222
L-prime indexed set      337
Langlands      323 334
Lattice      168
Laurent series expansions      175
Left group action      146
Legendre family      85 86
Lenstra’s algorithm      414
Lenstra’s factorization      415
Levi — Cita connection      359
Lie bracket structure      347
Lie group      19
Lifting theorems of Langlands and Tunnell      339
Line at infinity      3
Line bundle      389
Line bundles      371
Linear Euler product      225
Local field      275
Local ringed space      384
Locus      1
Logarithmic derivative      364
Long exact sequence in G-cohomology      151
Lorentz-Transformation      406
m-descent      165
m-descent, first      165
m-descent, second      165
Mazur      16 338
Mellin transform      224 309 310
Minimal Calabi — Yau 3-fold      398
Minimal normal form      106 108
Minimal surfaces      377
Mirror Symmetry      400
Modified Hasse — Weil L-function      313
Modular curve      216
Modular curve conjecture      324 333 337
Modular curve, ramified covering of a      218
Modular curves      215 218
Modular equation      230
Modular form of weight k      228
Modular forms for $|Gamma_0(N)$, $\Gamma_1(N)$ and $\Gamma(N)$      227
Modular function      209
Modular polynomial      230 231
Mordell      15
Mordell conjecture      9
Mordell — Weil group      125
Mordell — Weil theorem      140
Mordell’s theorem      12
Morphism      384
Morphism of category objects      428
Morphism of cocategories      439
Morphism of groupoids      430
Multiplication by N      272
Multiplicative group of k      43
n-dimensional l-adic representation      294
N-division point      234
N-division points      202
N-torsion elements      202
Neron minimal model      277
Neron model      275
Neron model, additive reduction of the      279
Neron model, multiplicative reduction of the      279
Neron model, special fibre of the      278 279
Neron models      383
Neron — Ogg — Safarevic criterion      297 281 336
Neron — Severi group      373 380
Neron — Severi group NS(X)      374
New form      229
Noncyclic subgroup of torsion points      101
Nondegenerate symplectic pairing      246
Nonsingular cubic curve      66
Norm function      125
Normal forms      67
Nullstellensatz      136
Number field      141
Number of supersingular elliptic curves      263
Numerically effective      398
Numerically equivalent      374
Oort, F.      123
Order with conductor f      243
Ordinary case      270
Ordinary elliptic curve      269
p-adic filtration      111 112
Pairing, symplectic      236
Pappus’ theorem      52
Parallel transport      360
Pascal’s theorem      52
Period lattice      185
Periods of integrals      183
Perrin — Riou      332
Petersson inner product      230
Peudo-Riemannian metric      348 359
Pic(A) the projective class group      243
Picard group      372
Picard lattice      380
Picard number      374
Pjatech-Sapiro and Safarevic      396
Plane curve      4
Plane curves      2
Plane curves in projective space      4
Poincare      15
Poincare duality and Serre duality      368
Poincare symmetry      406
Point of inflection (flex)      55
Point of order p      26 5
Point of order r      53
Point, torsion      119
Pollard’s method      414
Polynomial, separable      145
Poper      132
Positive quadratic function      239
Potential good reduction      122
Prime indexed set      337
Primitive descent formalism      160
Principal bundle of frames      346
Principal divisor      173
Principal homogeneous G-set      148 150
Priod parallelogram      234
Projective plane      45
Projective space, r-dimensional      46
Purely imaginary quadratic field      267
Purely inseparable isogeny      266
Pythagoras      7
Pythagorean triples      9
q-expansion of Eisenstein series      190
q-expansions of A(r) and j(r)      193
q-expansions of elliptic functions      191
Quadratic imaginary field      243
Quasibilinear      133
Quasilinear      132
Quasiquadratic      133
Quaternion algebra      267
Quotient complex structure      171
Ramification      216
Rational plane curve      2
Rationality properties      301
Reciprocity law      240
Reduction at a prime p      275
Reduction mod n      216
Reduction modulo      103
Reduction, additive      120
Reduction, multiplicative      120
Reduction, semistable      120
Reduction, unstable      120
Related closed subscheme      389
Relatively minimal elliptic      393
Relatively minimal fibration      392
Representation      295
Resultant      48 61 71
Resultant matrix      61
Ribet      331 333 336 339
Ricci curvature form      365
Ricci flat Kahler metric      346 366
Ricci tensor      356
Riemann hypothesis      253 311
Riemann hypothesis for elliptic curves      254
Riemann zeta function      224 315
Riemann — Hurwitz relation      216
Riemann — Roch      375
Riemann — Roch for curves      69
Riemann — Roch proposition      205
Riemannian      353
Riemannian metric      359
Right G action      147
Ring of modular forms      440
Ring of multidifferential forms      440
Ring spectrum      441
Rohrlich      327
Rosati involution      241
Rubin      331 332
Safarevic conjecture      304
Scheme      385
Schoof      421
Schoof’s algorithm      416 422
Section      388
Selmer group      164 166 341 342
Semisimple representations      295
Semistable reduction      335
Serre      307 333
Serre duality      376
Serre’s Open Image Theorem      307
Setunramified      281
Sheaf of germs of divisors      388
Sheaf of rational functions      388
Shimura — Taniyama — Weil conjecture      333
Siegel’s theorem on the finiteness of integral points      306
Signature and intersection form      380
Singular point on a cubic curve      41
Small categories      427
Smooth function      348
Smooth real manifold      347
Solovay — Strassen test      415
Spec(R)      385
Special value of j(E)      211
Spectrum      441
Strictly compatible family of l-adic representations      302
String theory      401 403 404
SU(n) holonomy      346
Subgroups of $\mathbb{S}\mathbb{L}_2(\mathbb{Z})$      212
Subobject of fixed elements      147
Supersingular      260
Supersingular case      270
Supersingular curve      264
Supersingular elliptic curve      259 269
Supersymmetric Yang — Mills theory      407
Supersymmetry      406
Swinnerton — Dyer conjecture      125
Symplectic homology intersection pairing      237
Tangent and cotangent sheaves      379
Tangent bundle      346
Taniyama      291
Taniyama — Weil conjecture      333
Tate      270 272
Tate conjecture      305
Tate curve      198
Tate curve $E_q$      201
Tate module      333 338
Tate module $T_l(E)$ of an elliptic curve      246
Tate modules of modular elliptic curves      338
Tate normal form      92 93
Tate twist $\mathbb{Z}_l(1)$      246
Tate — Safarevic group      327
Tate — Sarafevic group      164 166
Tate’s description of homomorphisms      270
Tate’s theorem on good reduction      122
Taylor      333
The Hodge to de Rham spectral sequence      374
The line bundle of a positive divisor      372
Theorem Artin      144
Theorem Dedekind      144
Theorem Nagell-Lutz      115
Theorem of Chow      355
Theorem of Quillen      442
Theory of Eichler — Shimura      310
Theta function      189
Theta function f(z) of type $cz^r$      204
Threefolds      367
Topological modular forms      425 426 443
Torelli theorem      381
Toric geometry      346
Toric varieties      371
Torsion point      92
Torsion subgroup      15
Tunnell      334
Twist      256
Twisted form of A by $a_S$      151
Two imaginary conjugate roots      258
Two real forms      287
Two-dimensional l-adic representation      294
Unique factorization domain      57
Universal deformation ring      341
Unramified      338
Valuation      58
Valuation ring      58
Vector bundles      346
Vector field      347
Weierstrass P-function      171
Weierstrass — Hopf algebroid      426
Weight      303
Weight properties of Frobenius elements      303
Weighted projective spaces      370
Weil, A.      16 125
Wiles      9 324 333 334
Yang — Mills gauge group      403
Yau      346
Yau’s theorem      366
Zeiger, Don      275
zeros      388
Zeta function      257—259
Zeta function $\zeta_C(s)$ of $C/k_1$      257
Zeta function $\zet_E(s)$      255
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте