Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Laurens Jansen — Theory of Finite Groups. Applications in Physics
Laurens Jansen — Theory of Finite Groups. Applications in Physics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Theory of Finite Groups. Applications in Physics

Автор: Laurens Jansen

Аннотация:

No part of this book may be reproduced in any form by print or any other means without written permission from the publisher.


Язык: en

Рубрика: Физика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 1st

Год издания: 1967

Количество страниц: 376

Добавлена в каталог: 05.05.2013

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Space-time-inversion operator      306
Special k-vector      252
Spectral decomposition theorem      200—201
Spectrum of operator      200 201
Spin matrices (Pauli)      125 263 301
Spin representation      268
Spinor      192
Spinor space      192 213ff.
Square lattice-group      259—261
Square, group of      113—115
Stable subgroup (or $\Omega$-subgroup)      62
Stable subring      see "Ideal"
Stable subset      13
Stable subspace      79n
Star of k-vector      255
State mapping      193 202
State, quantum mechanical      189
Structure of set      1
Structure of set, algebraic      1
Structure of set, order      1
Structure of set, topological      1
Structure theorems (for finite abelian groups)      55
Subduccd representation      133 135ff.
Subgroup(s)      12—13
Subgroup(s), admissible      see "Subgroup(s) stable"
Subgroup(s), commutator      74
Subgroup(s), conjugate      33
Subgroup(s), dense      57
Subgroup(s), direct product of      41 51 57
Subgroup(s), direct sum of (for abelian groups)      42 54 57 58
Subgroup(s), improper      13
Subgroup(s), index of      16
Subgroup(s), invariant      see "Subgroup(s) normal"
Subgroup(s), normal      22 33—35
Subgroup(s), product of      39 51 57
Subgroup(s), proper      13
Subgroup(s), self-conjugate      see "Subgroup(s) normal"
Subgroup(s), semidirect product of      41
Subgroup(s), stable (or $\Omega$-subgroup)      62
Subgroup(s), sum of (for abelian groups)      42 54 57 58
Subgroup(s), weak direct product of      49
Submodule      69
Submodule, minimal      69
Subring      67
Subring stable      see "Ideal"
Subset      12
Subset, dense      193—194
Subset, stable      13
Subspace(s) (of vector space)      64 193
Subspace(s) (of vector space), complement of      196
Subspace(s) (of vector space), direct sum of      196
Subspace(s) (of vector space), orthogonal complement of      196
Subspace(s) (of vector space), stable      79n
Substitution (operator)      213ff.
Substitutional groups      213 215ff.
Substitutional point- and space-groups      217 242—243
Sum of abelian groups or subgroups      42 54 57 58
Sum of abelian groups or subgroups, direct      42 54 57 58
Sum of abelian groups or subgroups, infinite      57
Sum of abelian groups or subgroups, multiple finite      54
Superposition principle      189
Symmetric group      see "Permutation group"
Symmetric mapping      163
Symmetric property of equivalence relation      24
Symmetrization operator      234
Symmetry adapted functions      232
Symmetry group for quantum, Dirac-electron systems      222 293—298 307ff.
Symmetry group for quantum, general N-particle systems      222—223
Symmetry group for quantum, general one-particle systems      213ff.
Symmetry group for quantum, mechanical systems      203ff. 213ff.
Symmetry group for quantum, systems with external magnetic field      217—219 294ff.
Symmetry group for quantum, systems with spin-orbit coupling      206 210 218 219 221 262ff. 294 329ff.
Symmetry operation or operator      9 189 203ff.
Symmetry-operator ray      204ff.
Symmetry-operator ray group      204—207
Symmorphic space-group      241 242
Symmorphic space-group, irreducible representations of      161
Tetrahedral group      48 347
Tight-binding functions      250
Time-inversion operator      305
Time-reversal operator      211 281ff. 289 316 356
Time-reversal operator for Dirac-electron systems      316
Time-reversal operator for systems with spin-orbit coupling      282
Time-reversal operator for systems without spin      282
Time-reversal symmetry      211 281ff. 289ff.
Transformation      18
Transformation, invariance      214
Transformation, linear      64
Transformation, Lorentz      306
Transformation, Poincare (or inhomogeneous Lorentz)      303ff.
Transformation, similarity (of a group)      see "Conjugation"
Transformation, similarity (of a representation)      83
Transitive property of equivalence relation      24
Translation (operator)      238—239 240
Translation (operator), non-primitive      240
Translation (operator), primitive      240
Translation (operator), substitution      244
Translation group      239 246ff.
Translation group, double      268
Translation group, irreducible representations of      246ff.
Transposition      236
Trivial representation      see "Identity representation"
Union of sets      12
Unit cell of crystal      238
Unit cell of reciprocal space      247
Unit element      see "Identity element"
Unit operator      see "Identity operator"
Unitary metric      see "Euclidean metric"
Unitary operator      193
Unitary representation      83
Unitary space      86 190
Unitary unimodular matrix      221
Vector space(s)      61 70
Vector space(s), carrier      79
Vector space(s), complete      190
Vector space(s), disjoint      92 196
Vector space(s), Euclidean      61 85—86
Vector space(s), Hilbert      189ff.
Vector space(s), Lebesgue square-integrable function      192
Vector space(s), reciprocal      247
Vector space(s), representation      see "Vector space(s) carrier"
Vector space(s), spinor      192
Vector space(s), unitary      86 190
Wave vector      247—248
Wave vector, reduced      see "k-vector"
Weak direct product      49
Z-module      62
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2020
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте