Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Laurens Jansen — Theory of Finite Groups. Applications in Physics
Laurens Jansen — Theory of Finite Groups. Applications in Physics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Theory of Finite Groups. Applications in Physics

Автор: Laurens Jansen

Аннотация:

No part of this book may be reproduced in any form by print or any other means without written permission from the publisher.


Язык: en

Рубрика: Физика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 1st

Год издания: 1967

Количество страниц: 376

Добавлена в каталог: 05.05.2013

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Isomorphism theorem      37—38
Isomorphism theorem for operator groups      64
k-space      249
k-vector      248—249
k-vector, general      252
k-vector, group of      252
k-vector, special      252
k-vector, star of      255
Kernel of homomorphism      21
Kramers' degeneracy theorem      287
Kramers' degeneracy theorem, generalised      290
Kronecker product of matrices      154n
Kronecker product of representations      154—155 158—159
Lagrange's theorem      15—17
Lattice      238
Lattice, Bravais      353
Lattice, reciprocal      247
Lebesgue square-integrable function space      192
Length of a vector      see "Norm"
Linear manifold(s)      193
Linear manifold(s), direct sum of      196
Linear manifold(s), disjoint      196
Linear map      64
Linear operator      86 170 193
Linear subspace      see "Subspace"
Linear transformation      64
Little group      143 144
Lorentz group      306—307
Lorentz group, orthochronous      306—307
Lorentz group, proper      307n
Lorentz group, proper orthochronous (or restricted)      307
Lorentz transformation      306
Lorentz transformation, inhomogeneous (or Poincare transformation)      303ff.
Magnetic double point-groups      323
Magnetic point-groups      354 356
Manifold, linear      193
Map, linear      64
Mapping(s) (of groups or sets) of groups      17ff.
Mapping(s) (of groups or sets) of sets      17—18
Mapping(s) (of groups or sets), automorphic      20
Mapping(s) (of groups or sets), endomorphic      20n 59
Mapping(s) (of groups or sets), epimorphic      20n
Mapping(s) (of groups or sets), homomorphic      19ff.
Mapping(s) (of groups or sets), into      18
Mapping(s) (of groups or sets), isomorphic      19ff.
Mapping(s) (of groups or sets), monomorphic      20n
Mapping(s) (of groups or sets), natural      35
Mapping(s) (of groups or sets), one-to-one      18
Mapping(s) (of groups or sets), onto      18
Mapping(s) (of groups or sets), state      193 202
Mapping(s) (of groups or sets), symmetric      163
Maschke's Theorem      95
Matrices, Dirac      292 301
Matrices, kronecker product of      154n
Matrices, Pauli spin      125 263 301
Matrices, unitary unimodular      221
Matrix group(s)      83
Matrix group(s), Dirac      299
Matrix group(s), unitary      83
Metric      86
Metric, Euclidean      86
Module      5 69—70
Module, left and right      69
Module, R-      69
Module, two-sided      69
Module, Z-      62
Monoid      5
Monomorphism (or Monomorphic mapping)      20n
Multiplication law      2
Multiplication table      7
Multiplication, natural      36
Multiplicity of homomorphic mapping      22
Natural homomorphism      37
Natural mapping      35
Natural multiplication      36
Natural projection      see "Natural homomorphism"
Natural representation (of $S_{3}$)      118
Norm of a vector      86 190
Normal divisor      see "Normal subgroup"
Normal subgroup      22 33—35
normalizer      15
Octahedral group      see "Cubic group"
Operator domain of a group      58—59
Operator group (or $\Omega$-group)      58ff.
Operator homomorphism      see "Admissible homomorphism"
Operator on a group      59
Operator or Operation      193
Operator or Operation, adjoint      see "Operator or Operation hermitian
Operator or Operation, antilincar      170 193
Operator or Operation, antisymmetrization      234
Operator or Operation, antiunitary      195
Operator or Operation, charge conjugation      294 310 314
Operator or Operation, complex conjugation      170 216 281
Operator or Operation, Dirac      292 294
Operator or Operation, domain of      193
Operator or Operation, group projection      225ff.
Operator or Operation, hermitian      194—195
Operator or Operation, hermitian conjugate      86—87 194
Operator or Operation, idempotent      197
Operator or Operation, identity      193
Operator or Operation, inverse      194
Operator or Operation, linear      86 170 193
Operator or Operation, permutation      6 9—10 18 27—29 234—236
Operator or Operation, point-      238 304 306 307 334 335
Operator or Operation, projection      197
Operator or Operation, range of      193
Operator or Operation, reflection (in 3-dimensional Euclidean space)      9 349
Operator or Operation, rotation (in 3-dimensional Euclidean space)      9 27 238 335ff.
Operator or Operation, self-adjoint      see "Operator or Operation hermitian"
Operator or Operation, space-group      238ff.
Operator or Operation, space-inversion (in 3-dimensional Euclidean space)      238 334
Operator or Operation, space-inversion (in space-time)      306
Operator or Operation, space-time-inversion      306
Operator or Operation, substitution      213ff.
Operator or Operation, symmetrization      234
Operator or Operation, symmetry      9 189 203ff.
Operator or Operation, time-inversion      305
Operator or Operation, time-reversal      211 281ff. 289 316 356
Operator or Operation, translation      238—239 240
Operator or Operation, unit      see "Operator or Operation identity"
Operator or Operation, unitary      193
Operator set      see "Operator domain of a group"
Orbit      142—143
Order of conjugation class      30
Order of group      5
Order of group element      14
Orthochronous Lorentz group      306—307
Orthochronous Poincare group      306
Orthochronous point-operation (in space-time)      306
Orthogonal complement of subspace      196
Orthogonal decomposition of vector space or linear manifold      196
Orthogonality relations for characters      103 111
Orthogonality relations for matrix elements      100ff.
Pauli exclusion principle      234—236
Pauli spin matrices      125 263 301
Pauli — Schroedinger Hamiltonian      328
Pauli — Schroedinger Hamiltonian with spin-orbit coupling      262 329
Permutation (operator)      6 9—10 18 27—29
Permutation (operator) for many-particle systems      234—236
Permutation (operator), even and odd      236
Permutation group      6 9—10 115ff. 236
Permutation group in many-particle systems      234—236
Phase-multiplication property      208
Physical representation      208
Poincare group      304ff.
Poincare group, orthochronous      306
Poincare group, proper      307n
Poincare group, proper orthochronous      306
Poincare transformation      303ff.
Point-group(s)      9 334ff.
Point-group(s), abstract      352
Point-group(s), abstract crystallographic      354
Point-group(s), black-white      see "Point-group(s) Shubnikov"
Point-group(s), crystallographic      161 188 217 238 241 334 352ff.
Point-group(s), cubic      347
Point-group(s), cyclic      345 346
Point-group(s), dihedral      346
Point-group(s), double      269
Point-group(s), grey      355
Point-group(s), icosahedral      348
Point-group(s), magnetic      354 356
Point-group(s), magnetic double      323
Point-group(s), octahedral      see "Point-group(s) cubic"
Point-group(s), of the k-vector      252
Point-group(s), proper      341 348—349
Point-group(s), Shubnikov      354—355
Point-group(s), substitutional      217
Point-group(s), tetrahedral      347
Point-operation (in 3-dimensional Euclidean space)      238 307 334
Point-operation (in 3-dimensional Euclidean space), improper      238 335
Point-operation (in 3-dimensional Euclidean space), proper (or Rotation)      238 335
Point-operation (in space-time)      304
Point-operation (in space-time), orthochronous      306
Potential, four-      293
Potential, scalar (electric)      293
Potential, vector (magnetic)      293
primary group      55—56
Product of group elements      2
Product of groups or subgroups      39 51 57
Product of groups or subgroups, abstract (or external) direct      43 52 57
Product of groups or subgroups, direct      41 51 57 153ff.
Product of groups or subgroups, infinite      57
Product of groups or subgroups, multiple finite      51
Product of groups or subgroups, semidirect      41 46ff. 60 157ff.
Product of groups or subgroups, weak direct      49
Product, Kronecker, of matrices      154n
Product, Kronecker, of representations      154—155 158—159
Product, scalar      83 86
Projection operator      197
Projection operator, complementary      197
Projection operator, group      225ff.
Projection operator, perpendicular      197
Projection, natural      see "Natural homomorphism"
Proper Brillouin zone      258
Proper Lorentz group      307n
Proper orthochronous Lorentz group      307
Proper orthochronous Poincare group      306
Proper Poincare group      307n
Proper point-group      341 348—349
Proper point-operation (or Rotation) in 3-dimensional Euclidean space      238 335
Proper subgroup      13
Quaternions      70—71
Quotient group      see "Factor group"
Quotient set      35
Ray of symmetry operators      204ff.
Ray representative      204
Real affine group in 3 dimensions      241
Real orthogonal group in 3 dimensions      see "Rotation-inversion group"
Real orthogonal representation      85
Real representation      85
Reciprocal lattice      247
Reciprocal space      247
Reduced wave vector      see "k-vector"
Reduced zone      see "First Brillouin zone"
Reducible co-representation      173
Reducible representation      79 80 92ff.
Reduction of operator      199
Reflection (in 3-dimensional Euclidean space)      9 349
Reflexive property of equivalence relation      24
Regular representation      80 135
Representation space      see "Carrier space"
Representation(s)      76ff.
Representation(s), allowable      149
Representation(s), alternating      236
Representation(s), associate      149
Representation(s), carrier space for      79
Representation(s), character (vector) of      97
Representation(s), commuting ring of      100
Representation(s), completely decomposed      95
Representation(s), completely reduced      94
Representation(s), complex conjugate of      125ff.
Representation(s), conjugate      142
Representation(s), decomposable      94
Representation(s), double-valued      see "Representation(s) spin"
Representation(s), engendered      152
Representation(s), equivalent      83
Representation(s), extra      273—274
Representation(s), faithful      76
Representation(s), identity      77 112
Representation(s), indecomposable      94
Representation(s), induced      133—135 138ff.
Representation(s), irreducibility      79 80 92ff.
Representation(s), irreducible criterion for      107
Representation(s), Kronecker product of      154—155 158—159
Representation(s), natural (of $S_{3}$)      118
Representation(s), physical      208
Representation(s), real      85
Representation(s), real orthogonal      85
Representation(s), reducible      79 80 92ff.
Representation(s), regular      80 135
Representation(s), spin      268
Representation(s), subduced      133 135ff.
Representation(s), trivial      see "Representation(s) identity"
Representation(s), unitary      83
Resolution of the identity      198
Resolution of the identity, associated with group of operators      199 226 227
Resolution of the identity, associated with hermitian operator      200—201
Restricted Lorentz group      see "Proper orthochronous Lorentz group"
Restriction of operator      200
Ring      5 67
Ring homomorphism      67
Ring of matrices      68 100
Ring of quaternions      70—71
Ring with unit element      67
Ring, center of      68
Ring, commuting (of representation)      100
Ring, division      see "Field"
Rotation (in 3-dimensional Euclidean space)      9 27 238 335ff.
Rotation group in 3 dimensions      27 335
Rotation-inversion group in 3 dimensions      307 334
Scalar product (hermitian)      83 86
Schur — Auerbach theorem      83
Schur's Lemmas      98—99
Self-adjoint operator      see "Hermitian operator"
Self-conjugate subgroup      see "Normal subgroup"
Semidirect product of groups      41 46ff. 60
Semidirect product of groups, irreducible representations of      157ff.
Semigroup      65
Separable Hilbert space      191
Set(s)      1
Set(s) with structure      1
Set(s), disjoint      13
Set(s), intersection of      12
Set(s), quotient      35
Set(s), union of      12
Shubnikov point-groups      354—355
Similarity transformation of group      see "Conjugation"
Similarity transformation of representation      83
Simple group      34
Single group      205
Skew field      70
Space      see "Vector space"
Space-group (crystallographic)      118 217 233 236ff.
Space-group (crystallographic), double      243 261ff.
Space-group (crystallographic), substitutional      217 242—243
Space-group (crystallographic), symmorphic      161 241 242
Space-group operator      238ff.
Space-group operator, substitution      242
Space-inversion operator (in 3-dimensional Euclidean space)      238 334
Space-inversion operator (in space-time)      306
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте