|
|
Авторизация |
|
|
Поиск по указателям |
|
|
|
|
|
|
|
|
|
|
Burkhardt H. — Theory of Functions of a Complex Variable |
|
|
Предметный указатель |
Uniform approach to a limit 132 141 155
Uniform continuity 132
Uniform convergence 155 156 200 202 203
Unique development in a power series 207
Unit circle 15 40
Unit circle, mapped on z-half-plane 67
Unit circle, reflection on 40
Units for complex numbers 8
Units for number-pairs 7
Upper bound = low integral 152
Upper bound, least 128
Upper integral 152
Upper limit of an integral 189
Upper, lower bounds 127 128
Value of a function in a domain 196
Value of a function, at and 173
Value of a function, indeterminate 45 103 174
Values of a periodic function 233
Variable, definition of complex 28
Variable, uniformizing 276
Variation of a quantity, total 175
Veblen and Lennes 28 131 140 162
Velocity potential 186 187
Weber 317
| Weierstrass 129 168 201 228 261 263 382 383
Weierstrass, expansion in a product 373
Whittaker 276
Winding-point 395
Young, W.H. and G.C. 136
Zero 205 211 241
Zero, at 106
Zero, corresponds to 45 104
Zero, division by 45
Zero, many-fold 102
Zero, point 102
Zeros and poles 242
Zeros and poles, at a branch point 335
Zeros and poles, number of 240—242
“Analytic about”, “regular at” 282
“Complete” equation, definition of a 299
“Element” of the analytic function 384
“Origin” of coordinates, the 12
“Parts” of the Riemann’s surface 323
“Periodicity, modulus of” 352
“Periodicity, modulus of” of the trig. and exp. functions 222
“Rationalizing” 345
“Regular at”, “analytic about” 282
“Sheets” of a Riemann’s surface 293 323
“Uniformizing” variable 276
|
|
|
Реклама |
|
|
|