Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ilachinski A. — Cellular automata. A discrete universe
Ilachinski A. — Cellular automata. A discrete universe



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Cellular automata. A discrete universe

Автор: Ilachinski A.

Аннотация:

Cellular automata are a class of spatially and temporally discrete mathematical systems characterized by local interaction and synchronous dynamical evolution. Introduced by the mathematician John von Neumann in the 1950s as simple models of biological self-reproduction, they are prototypical models for complex systems and processes consisting of a large number of simple, homogeneous, locally interacting components. Cellular automata have been the focus of great attention over the years because of their ability to generate a rich spectrum of very complex patterns of behavior out of sets of relatively simple underlying rules. Moreover, they appear to capture many essential features of complex self-organizing cooperative behavior observed in real systems.
This book provides a summary of the basic properties of cellular automata, and explores in depth many important cellular-automata-related research areas, including artificial life, chaos, emergence, fractals, nonlinear dynamics, and self-organization. It consists of 12 largely self-contained chapters. The last chapter presents a broad review of the speculative proposition that cellular automata may eventually prove to be theoretical harbingers of a fundamentally new information-based, discrete physics. Designed to be accessible at the junior/senior undergraduate level and above, the book will be of interest to all students, researchers, and professionals wanting to learn about order, chaos, and the emergence of complexity. It contains an extensive bibliography and provides an annotated listing of cellular automata resources available on the World Wide Web.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2001

Количество страниц: 842

Добавлена в каталог: 19.03.2006

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Scalar fields      657
Scale invariance      55
Scaling behavior      177
Scaling hypothesis      330
SDCA model      444
Second law of thermodynamics      559
Self organization      8 95 559 609 692
Self organized criticality      437 441
Self similarity      27
Self-reproducing automata      570
Sequential updating      285
Set theory      21
Shannon information      29
Shift operator      47
Shift transformations      236
Simplicial complex      619 659
Simulated annealing      532
Smith canonical form      263
Soliton collision theorem      93
Solitons      64 91 399
Solomonov — Kolmogorov — Chaitin complexity      624
Spatial block entropy      83
Spatial domain structures      390
Spatial set entropy      215
Spatio-temporal intermittency      397
Spatio-temporal measures for infinite lattices      221
Spin glasses      286 337 519
Spin glasses, equivalence with probabilistic CA      341
Spinodal point      128
Splitting field      243
Standard map      192
Standard map, sample trajectories      194
State transition graph      48 81 241 295
Stochastic dynamics      327
Stochastic neural nets      531
Strange attractors      171
Strange attractors, 2D examples      187
Structurally dynamic cellular automata (SDCA)      51 443 694
Structurally dynamic cellular automata (SDCA), example      447
Structurally dynamic cellular automata (SDCA), neighborhood partitioning      446
Structurally dynamic cellular automata (SDCA), patterns      451
Surface tension      129
SWARM system      568
Symbolic dynamics      195
Thermodynamic depth      627
Thermodynamic, behavior      385
Threshold automata      274
Time-reversal invariance      94
Toffoli, Tom      4 94 129 317 610 669 713
Top-down      558
Topological characterization of CA      46
Topological dimension      26
Topology (on a set)      24
Toss model      363
Totalistic PC A      348 352
Totalistic peripheral CA      348
Traffic CA      157
TRANS1M      566
Transfer matrix      335
Transitional lattice construction      110
Turbulence      399 470
Turbulence, Feigenbaum route      475
Turbulence, Landau — Hopf route      472
Turbulence, Pomeau — Manneville route      474
Turbulence, routes to turbulence      472
Turbulence, Ruelle — Takens — Newhouse route      473
Turing machine      149 293 679
Turing's Halting theorem      679
Turing's theorem      3
Turtle graphics      579
Two-dimensional CA      48 116
Two-dimensional CA, combat models      457
Two-dimensional CA, Conway's Life rule      129
Two-dimensional CA, Greenberg — Hastings model      420
Two-dimensional CA, hodgepodge rule      422
Two-dimensional CA, infinite systems      128
Two-dimensional CA, majority rules      281
Two-dimensional CA, nucleating rules      125
Two-dimensional CA, percolating rules      125
Two-dimensional CA, random seeds      123
Two-dimensional CA, simple seeds      119
Two-dimensional CA, voting rules      124
Ugly-duckling theorem      629 700
Ultrametric distribution      339 621
Undecidability      684
Universal computation      89 141
Universal computer      6 293 316 624
Universal logic gates      312
Universal reversible logic gate      313
Universality      50 60 69 329
Universe as CA      660
Universe as CA, speculations I (Minsky)      662
Universe as CA, speculations II (Zuse)      664
Universe as CA, speculations III (Fredkin)      665
Virtual ants (vants)      580
von Neumann      xxviii 3 4 310 570
von Neumann neighborhood      49
Voting rules      128
WinCA      721
Wolfram's behavioral classification      63 98 683
Wolfram's behavioral classification, local structure theory alternative      247
Wolfram's behavioral classification, refinement due to Culik and Dube      64
Wolfram, Stephen      xxvii xxviii 1 3 4 47 53 91 118 161 678 680
XOR function      537
XOR problem      515 548
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте