Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Altman A., Kleiman S. — Introduction to Grothendieck duality theory
Altman A., Kleiman S. — Introduction to Grothendieck duality theory



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Introduction to Grothendieck duality theory

Авторы: Altman A., Kleiman S.

Язык: en

Рубрика: Математика/Алгебра/Алгебраическая геометрия/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1970

Количество страниц: 96

Добавлена в каталог: 12.03.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
$ \widehat{N} (l)$ (l an immersion)      VI 1.21
$astrx_{X/Y}$ (X a flat cover of Y)      VI 6.5
$deg_k (x)$ (k an artinian ring, $x \in X$ a curve over k)      VIII 1.6
$depth_I (M)$ , $depth_A (M)$ , depth(M) (M an A-module, I an ideal)      IV 3.9 3.11
$Der_k (A,M)$ (A a k-algebra, M an A-module)      VI 1.1
$dim_x (X/Y)$, $dim_x (f)$ (f a morphism from X to Y, $x \in X$)      VII 1.3
$D_{X/Y}$ ( X a flat cover of Y)      VI 6.5
$E^v$ (E a locally free sheaf)      IV 2.6
$F_q (M,n)$      II 4.14
$F_{( M_n )$      II 4.13
$h^1 (F)$, $h^1 (D)$,$\chi (F)$, $\chi (D)$ (F a Module, D a divisor)      VIII 1.1
$J_X$ (X an algebraic curve)      VIII 1.14
$Kos_{A/k}(w/s)$      VIII 2.5
$K_*(\b{x})$, $K_*(\b{x}_jM)$, $K^*(\b{x}_jM)$, $H^*(\b{x}_jM)$ (M an A-module, $x_1 \in A$)      I
$K_X$ (X a ringed apace)      VII 3.2
$O_D$ (D a divisor)      VII 3.6
$O_X (D)$ (x a ringed space, D a divisor)      VII 3.4
$proj.dim_A (M)$, $inj.dim_A (M)$ (M an A-module)      III 5.1
$S^{-1} M$, $S^{-1} p$ (M an A-module, p a prime, $S \in \Lambda$)      II 3.9
$S_A$ (A a ring)      VIII 2.3
$tr.deg_k A$ (k a field, A a k-algebra)      III 2.6
$Tr_{A'/A}$ ($A'$ an A-algebra)      VIII 3.7
$T_{X/Y}(x)$, $T_x(f)$, df(x) (f a morphism from X to Y, $x \in X$)      VII 5.4
$u_{B/A/k}$, $v_{B/A/k}$ (A a k-algebra, B an A-algebra)      VI 1.5
$Y_r (F)$ (F a Module)      IV 1.2
$[A, Hom_k (M,N)]$ (A a k-algebra, M, N A-modules)      VIII 2.1
$\chi (M,n)$      II 4.10
$\ell_A (M)$, $\ell (M)$ (M an A-module)      II 4.1
$\epsilon^*$      IV 5.2
$\Im^1 (X)$ (X a locally noetherian scheme)      VII 3.1
$\Lambda^{max} F$ (F a locally free sheaf)      VI 6.5
$\left( d_{A/k}, \Omega^1_{A/k} \right)$ (A a k-algebra)      VI 1.3
$\triangle\chi$ ($\chi$ a polynomial)      II 4.11
$\varprojlim M_i$ ($(M_i \cdot f_j^l)$ a protective system)      II 1.6
$\vartheta_{X/Y}$ (X a Y-scheme)      VI 6.4
$\widehat{N}$ (N a filtered module)      II 1.7
${{\delta(g_1,\ldots,g_N)} \over {\delta(T_1,\ldots,T_N)}}(x)$      VII 5.14
Ann(x)      II 3.1
Arithmetic genus      VIII 1.17
Artinian (ring, module)      II 4.4
Ass(m), Ass(F) (M a module, F a module)      II 3.1
Associated graded ring , module      II 1.4
Associated prime      II 3.1
Branch locus      VI 6.3
c, $n_x$, $d_x$      VIII 1.16
Canonical divisor      VIII 1.11
Cartan — Eilenberg resolution      IV 2.1
codim(Y,X) (Y a closed subscheme of X)      V 2.9
Codimension      V 2.9
Cohen — Macaulay module      III 4.1
Complete intersection      III 4.4
Composition series      II 4.1
Conormal sheaf      VI 1.21
Constructible      V 4.1
Cover      VI 6.1
cyc, $v_N(D)$      VII 3.9
Cycle map      VII 3.8
d(M), s(M)      III 1.1
deg(D) (D a divisor)      VIII 1.4
Degree      VIII 1.3
Depth      III 3.9 3.12
Differential, 1-differential, differential pair      VI 1.3
dim(X) , $dim_A (M)$, dim(M) (X a topological space , M an A-module)      III 1.1
DIMENSION      III 1.1
Discrete valuation ring      VII 2.4
Discriminant      VI 6.5
Div(X) (X a ringed space)      VII 3.2
Divisor      VII 3.2
Divisorial cycle      VII 3.1
Effective divisor      VII 3.5
Embedded component, prime, prime cycle      II 3.1
Equidimensional      III 1.1
Essential prime      II 3.1
Etale morphism      VI 4.1
Euler — Poincare characteristic function      VIII 1.1
Factorial domain      VII 2.15
Faithful      V 1
Faithfully flat      V 1.3 2.1 2.5
Filtration      II 1.1
Flat      V 2.1 2.5
Generically reduced      VII 2.2
Generisation      V 2.6
Geometric genus      VIII 1.17
gl.hd(A) (A a ring)      III 5.3
Global homological dimension      III 5.4
gr*(M) , $qr_q^*(M)$ (M a filtered A-module , q an ideal)      II 1.4
Graded ring, module      II 1.
Height      III 3.1
Hilbert characteristic function      II 4.10
Hilbert — Samuel polynomial      II 4.14
Ideal of definition      III 1.2
Infective dimension      III 5.1
Irredundant      II 3.13
J(F), $\delta_x$      VIII 1.9
J(X) (X a locally noetherian scheme)      VII 3.1
k-derivation      VI 1.1
Kaehler different      VI 6.4
Kes      VIII 1.14
Koszul complex      I 4.1
Length      II 4.1
Locally factorial scheme      VII 2.15
Locally principal divisorial cycle      VII 3.9
M-quasi-regular      III 3.3
M-regular      III 3.1
Meromorphic functions      VII 3.2
Minimal prime      II 3.11
Nilradical      II 2.8
Noetherian topological space      V 4.1
Normal domain      VII 2.6
p-primary      II 3.12
Pic(X) (X a ringed space)      VII 3.7
Picard group      VII 3.7
Polynomial morphism      VII 1.1
Positive      VII 3.1
Primary decomposition      II
Prime cycle      II 3.11
Prime divisor cycle      VII 3.1
Projective limit      II 1.6
Protective dimension      III 5.1
Pseudo-differential      VIII 1.9
Q(M,n)      II 4.11
Q(p) (p a prime ld^ai)      II 3.14
q-adic filtration      II 1.1
q-good filtration      II 1.11
Quasi-faithfully flat      V 2.5
Quasi-finite      VI 2.1
Quasi-flat      V 2.5
rad(A) (A a ring)      II 1.20
Radical morphism      VI 5.1
Reduced      VI 3.2
Regular immersion      III 4.4
Regular local ring, regular parameters      III 4.6
Relative dimension      VII 1.3
Residue map      VIII 1.14
Saturation      II 3.16
Scheme with property $R_k, \ ( S_k )$      VII 2.1
Second fundamental form      I 3
Separable polynomial      VI 6.11
Separated      II 1.1
Separated completion      II 1.7
Sheaf of 1-differential forms      VI 1.21
Sheaf of rational pseudo-differentials      VIII 1.12
Smooth morphism      VII 1.1
Spectral sequence of a composite functor      IV 2.2
Supp(F), Supp(M) (F a sheaf, M a module)      II 2.1
Support      II 2.1
Tangent space      VII 5.4
tr,Tr      VI 6.5
Trace      VI 6.5
Uniformizing parameter      VII 2.4
Unranified morphism      VI 3.1
V      VII 2.3
V(J) (J a sheaf of ideals)      II 2.5
Yoneda pairing      IV 1.1
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте