| 
			         | 
		         
		       
		        
			          | 
		          
		        
					| Авторизация | 
		         
		        
					| 
 | 
		          
		        
			          | 
		          
		        
			        | Поиск по указателям | 
		         
		        
			        
					 
				        
					
			         | 
		          
		        
			          | 
		          
			
			         | 
		         
       		 
			          | 
		          
                
                    | 
                        
                     | 
                  
		
			          | 
		          
		        
			          | 
		          
		
             
	     | 
	    
	      | 
	    
	    
            
		 |  
                
                    | Volterra V. — Theory of Functionals and of Integral and Integro-Differential Equations | 
                  
                
                    | 
                        
                     | 
                 
                                                                
			          | 
	          
                
                    | Предметный указатель | 
                  
                
                    
                        Abel      55 56 69  
Adams      176 208  
Addition theorems, Huygens' principle in Hadamard's sense      183  
Addition theorems, integral addition theorems      105 133  
Addition theorems, integral addition theorems connected with the equations of mathematical physics      183  
Alexandroff      205 208  
Amoroso      167 206 208  
Andreoli      134 208  
Arzela      13 35 173  
Baer      208  
Baeri      167  
Baire      8 14 35  
Banach      viii 208  
Barnet      167  
Barnett      208  
Bateman      208  
Bedarida      167  
Bennett      69  
Bernstein      69  
Bertrand      208  
Bianchi      103  
Birkhoff      208  
Birtwistle      200 217  
BLISS      206 208  
Block      69  
Bocher      vi 50 69 181  
Bocher's type of integro-differential equations      181  
Bohannan      97  
Boltzmann      208  
Bompiani      135  
Bonferroni      208  
Born      208  
Bouligand      35 181 208  
Bourlet      201 208  
Bray      180 181 182 208  
Browne      69  
Bucht      69  
Burgatti      69  
Calculus of variations as a chapter of theory of functionals      13 14 172  
Calo      200 209  
Castigliano      187  
Cauchy      74 87 95 103 131 183 192  
Chrystal      209  
Composition, composition of the first kind      99  
Composition, composition of the second kind      100  
Continuity of functionals      9—14  
Courant      vii 24 35 209  
Cramer      44 48 49  
Crudeli      167  
D'Alembert      149  
Daniele      35 135 167  
Daniell      34 35  
Davis      69 174 209  
de Donder      97 217  
De Toledo      v ix  
Delsarte      vi 185 186 209  
Derivatives, derivative by composition      129  
Derivatives, derivatives of functions of lines with respect to the coordinate planes      80  
Derivatives, derivatives with any index whatever      55  
Derivatives, differentiation, derivation, variation of functionals      22—25  
Derivatives, necessary and sufficient condition that a functional may be considered as the functional derivative of another functional      157—159  
Derivatives, symmetry of derivatives of functionals      24  
Dienes      35  
Dines      209  
Dirichlet      4 46 47 56 57 165 173 174 175 181 182  
Dirichlet's problem, Evans' method in the case of discontinuous boundary value problems      180—181  
Dirichlet's problem, method of integral equations      174—175  
Dirichlet's problem, method of the calculus of variations and functions of lines      173  
Dixon      69  
Donati      187 217  
Euler      31 127 160  
Euler's theorem on homogeneous functions (Extension of)      160  
Evans      v vi vii viii 35 47 58 68 69 70 101 134 135 154 155 167 168 180 181 182 206 208 209  
Evans' boundary value problems for Poisson's equation      181 see  
Fabri      6 36 79  
Fantappie      v vi ix 53 70 184 200 201 202 203 204 209 210  
Fantappie's functional indicatrix      201—203  
Fischer      36 168  
Forel      177 210  
FOURIER      154 176  
Frank      210  
Frechet      vi 8 9 10 13 15 20 21 27 29 36 97 156 168 202 204 205 210 211 218  
Frechet's abstract aggregates, abstract spaces      8—14 204—205  
Freda      viii 160 161 168  
Freda's functional derivative equations      160  
Fredholm      49 62 70 175 176 184 185 186 204 211  
Fubini      168  
Fuchs' theory of linear differential equations (Extension of)      141  
Functional derivative equations in the theory of isogeneity      90—95  
Functional derivative equations of the first order, canonical integro-differential equations and connected functional derivative equation      163  
Functional derivative equations of the first order, functional derivative equations in functions of lines      82 88 155 156 see  
Functional derivative equations of the first order, functional derivative equations of the first order and connected integro-differential equations      161  
Functional derivative equations of the second order, equations in quantum electrodynamics      165  
Functional derivative equations of the second order, equations of Laplace type      164  
Functional equations, branch elements of solutions of functional equations      65—66  
Functional equations, general functional equations and implicit functionals      63—65  
Functional equations, generalisations of systems of n equations in n unknowns      40  
Functionals, analytic functionals      201  
Functionals, extremes of a functional      13  
Functionals, functional derivative equations      155  
Functionals, functional dynamics      184  
Functionals, functional fields      7  
Functionals, functional operators      8 200  
Functionals, functional power series      21  
Functionals, functional rotations      185  
Functionals, functional transformations      183  
Functionals, functionals in quantum mechanics      208  
Functionals, functionals in the theory of elasticity      187 see  
Functionals, functionals of degree n      19  
Functionals, functionals of the first degree      14  
Functions of an infinite number of variables and problems with an infinite number of unknowns      2 3 22 23 40 43 49 138 158 161 163 176 179—180 184—185 203  
Functions, conjugate functions in space      87—90  
Functions, functions by composition      129 132  
Functions, functions of hyperspaces      6 85  
Functions, functions of lines      59 74  
Functions, functions of lines of the first degree      79  
Functions, isogenic functions      91—95  
Functions, order of a function      110  
Gateaux      vii 12 33 36 37 164 187  
Gauss      89 173  
Giorgi      200 211 217 218  
Goursat      50 51 52 70 176  
Graffi      149 171 196  
Gramegna      168  
Graustein      97  
Green      vii 89 152 153 165 166 174 179 181  
Green's function in integro-differential equations (Extension of)      153 see  
Groups (Functional), group of the functions permutable with a given function      110  
Groups (Functional), groups in functional kinematics      185  
Groups (Functional), groups of linear functional transformations      183—184  
Groups (Functional), invariant for groups of functional transformations      184  
hadamard      vii 13 15 16 37 55 70 103 105 124 133 135 166 168 173 183 184 202 203 211  
Hadamard's differential equation for Green's function      166  
Hadamard's differential equation for Green's function, expression for linear functionals      15 see  
Hamilton      156 163 164 172  
Heaviside      200 218  
Hebroni      168  
Hecke      211  
Heisenberg      164 173 208 211  
Helly      37  
Hereditary questions, energy equations in hereditary phenomena      196—200  
Hereditary questions, general laws of heredity      188—190  
Hereditary questions, hereditary action in elastic torsion      147—149 189  
Hereditary questions, hereditary dynamics      191  
Hereditary questions, hereditary elasticity      192  
Hereditary questions, hereditary electromagnetism      194  
Hereditary questions, hereditary phenomena      147  
Hereditary questions, principle of the closed cycle      189  
Hereditary questions, principle of the dissipation of hereditary action      188  
Hertz      194 211  
 | hilb      168  
hilbert      vii 50 51 70 173 175 176 203 204 212  
Hildebrand      37  
Hill      168  
Hirahawa      212  
Holmgren      55 70  
Hooke      193 194  
Horn      70  
Hostinsky      166 212  
Hotelling      206 212  
Hu (Minfu Tat)      168  
Huygens      183 184  
Ince      70  
Integral equations, applications of the theory of composition to the solution of integral equations      106 143 145  
Integral equations, Fredholm's integral equations      41  
Integral equations, Fredholm's linear integral equations of the first kind      51  
Integral equations, Fredholm's linear integral equations of the second kind      48  
Integral equations, integral equations obtained from problems of the calculus of variations      30 141  
Integral equations, inversion of multiple integrals      63  
Integral equations, systems of integral equations      62  
Integral equations, Volterra's integral equations      42  
Integral equations, Volterra's linear integral equations of the first kind      53  
Integral equations, Volterra's linear integral equations of the second kind      43  
Integration of functionals      32  
Integro-differential equations, equations of canonical type      163 see  
Integro-differential equations, generalisation of systems of n differential equations with n unknown functions      138  
Integro-differential equations, integro-differential equations for biological species living together      206  
Integro-differential equations, integro-differential equations for the determination of groups of permutable functions      112 142  
Integro-differential equations, integro-differential equations obtained from problems of the calculus of variations      31 142  
Integro-differential equations, integro-differential equations obtained from the theory of permutable functions of the first kind      143—145  
Integro-differential equations, integro-differential equations obtained from the theory of permutable functions of the second kind      145—147  
Integro-differential equations, integro-differential equations of elliptic, hyperbolic, and parabolic type      149—155  
Integro-differential equations, systems of integro-differential equations      145  
jacobi      155 156 163  
Jacobi — Hamilton theory (Extension of the)      156  
JORDAN      164 165 168 176  
Joule      199  
Kakeya      37 70  
Kellogg      208 212  
Kernels, case in which the kernel vanishes      60  
Kernels, Evans' method by calculation of solvent kernels      67  
Kernels, Evans' periodic kernels      134  
Kernels, kernels of the closed cycle      189  
Kernels, logarithmic kernels      58  
Kernels, singular kernels      54 58  
Kernels, solvent kernels      44 67  
Kernels, symmetrical kernels      50  
Korn      212 218  
Kostitzin      195 212  
Kowalewski      183 184 212  
Krall      166 168  
Lagrange      74 179 185 191 200  
Lalesco      50 61 70 176  
Laplace      86 88 89 90 92 150 153 164 174 181  
Lauricella      53 70 135 212  
Le Roux      70  
Le Stourgeon      37  
Lebesgue      9 37 132 135  
Lefschetz      85 97  
Leibniz      200 218  
Lense      212  
Levi      37 213  
Levi-Civita      70 184 213  
Levy (P.)      vi vii 11 12 18 37 70 71 159 166 169 205 213  
Lichtenstein      213  
Lie      184  
Liouville      55 56 71  
Lipschitz      140  
Logarithms by composition      124  
Luesis      135  
Mandelbrojt      56 71 95 97  
Manneback      213  
Marcolongo      213  
Maria      180 213  
Marian      177 213  
Matteuzzi      180 213  
Michal      vi 184 213 214  
Miles      182  
Moisil      vi 185 214  
Molinari      71  
Moore      vi 204 214  
Morera      95 218  
Myller      214  
Nalli      38 136  
Neumann      175 178 182  
Nicholson      214  
Nicolesco      74 97  
NOERLUND      136  
Oseen      214 218  
Pascal (E.)      38 97  
Pascal (M.)      97  
Pauli      164 165 168 173 176 211  
Peano      173 214  
Peres      vi viii 101 106 110 111 112 113 114 115 116 117 118 121 122 123 126 129 130 131 136 169 182  
Peres' transformations      114—118  
Permutability, determination of the functions permutable with a given function      110—114 see  
Permutability, functions permutable of the first kind with unity      108—110  
Permutability, permutability of the first and of the second kind      100  
Picard      42 53 71 139 214  
Pick      214  
Picone      38 71 214  
Pincherle      200 201 202 214 215 218  
Poincare      175 180 215  
poisson      164 181  
Poisson's parentheses (Extension of)      164  
Poli      71  
Polydromy of function of lines      82—85  
Pomey      141 169  
Poole      215  
Popovici      176 215  
Powers, powers and polynomials by composition      101  
Powers, powers by composition with a fractional exponent      118  
Powers, powers by composition with a negative exponent      122—124  
Poynting      198 215  
Prasad      71  
Proudman      179 215  
Radon      38  
Rasor      38  
Recchia      136  
Ricci      176  
Richardson      215  
Riemann      55 71 74 86 173  
Riesz      17 38  
Risser      206 215  
Roos      206 215  
Roster      215  
Sabbatini      66 71  
Sassmannshausen      170  
Sbrana      71 215  
Scatizzi      55 72  
Schlesinger      141 170  
Schmidt      51 65 72 176  
Schoenbaum      170 206 215  
Schroedinger      165  
Schwarz      173 215  
Seiches (Oscillations of lakes)      170 177  
Series, series by composition of the first kind      102  
Series, series by composition of the second kind      132  
Serini      195 216  
Servois      200  
Severini      136  
Sierspinski      205 216  
Sinigallia      136 170  
Somigliana      166  
Sonine      56 72  
Staeckel      164  
Staeckel's theorem of the separation of the variables (Extension of)      164  
Steinhaus      viii 15 38 218  
Stieltjes      9 17 18 34 182  
Stokes      158 159  
 |   
                            
                     | 
                  
			  | 
		          
			| Реклама |  
			  | 
		          
			 |  
                             
         |