Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Finkbeiner D.T. — Introduction to Matrices and Linear Transformations
Finkbeiner D.T. — Introduction to Matrices and Linear Transformations



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Introduction to Matrices and Linear Transformations

Àâòîð: Finkbeiner D.T.

Àííîòàöèÿ:

The present text is a revised form of mimeographed lecture notes written in 1951 for the second semester of a survey course in abstract algebra at Kenyon College.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1960

Êîëè÷åñòâî ñòðàíèö: 255

Äîáàâëåíà â êàòàëîã: 14.02.2013

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Matrix, characteristic values of      126—133 136—141 146 155 185— 191 198—202 206-207
Matrix, characteristic vectors of      126—133 135—141 185—186 191 201-202
Matrix, conjugate of      184—185 189
Matrix, continuity of      202
Matrix, derivative of      202—204
Matrix, determinant of      88—96
Matrix, diagonability of      130— 133 136—141 189
Matrix, diagonal      69 72 129—132 136—142 166—167 186 189 200
Matrix, elementary divisors of      157—158
Matrix, hermitian      190—191
Matrix, idempotent      70 72 75 125 139
Matrix, identity      68
Matrix, impedance      124
Matrix, integral of      202
Matrix, inverse of      70 72 97—99 103—104 113—114 118—120 159—161 180 200 227
Matrix, Jordan form of      153—158 196—198 206
Matrix, largest characteristic value of      200—201
Matrix, Lorentz      79—80
Matrix, main diagonal of      69
Matrix, Markov      79 130
Matrix, minimal polynomial of      134—137 157—158 185
Matrix, nilpotent      70 76 142—155 196—197 207
Matrix, non-singular      70 72 78
Matrix, orthogonal      180 186
Matrix, Pauli      79
Matrix, permutation      109 224—227
Matrix, pivot operations on      102—105 222—228
Matrix, rank of      76— 79 85 118
Matrix, row operations on      108—110
Matrix, scalar      68—69 72 199
Matrix, scalar multiple of      65
Matrix, Segre characteristic of      157—158
Matrix, singular      70 99
Matrix, skew-symmetric      71—72 99 166 168 182—183
Matrix, strictly triangular      70 72
Matrix, symmetric      71—72 120 166—167 183— 191
Matrix, trace of      159—161 191 198 204
Matrix, transpose of      71 85
Matrix, triangular      69 72 78 128 197
Matrix, unitary      181 191
Matrix, Vandermonde      96 100 199
Matrix, zero      65
Member of a set      4
Metric      184
Metric space      173
Minimal polynomial      134—137 157—158 185
Monic polynomial      134
Nilpotent linear transformations      48 54 76 133 142—155
Nilpotent matrices      70 76 133 142—155 195—197 207
Non-homogeneous system      86
Non-singular linear transformation      55—57 153
Non-singular matrix      70 72 78
Normal orthogonal basis      176—180 186 189
Normal vector      176
Null space of a linear transformation      52—54 142 153
Nullity of a linear transformation      52—54
Operation, $n$-ary      211
Operation, binary      14 211
Operation, closed      13 17— 19 211
Operation, elementary      101 108 117
Operation, pivot      102 222—228
Operation, unary      14
Ordered $n$-tuple      209
Ordered pair      8
Orthogonal, complement of a subspace      175 178
Orthogonal, Matrix      180 186
Orthogonal, projection      143 145 174—175 178 200
Orthogonal, transformation      178—182 185—186
Orthogonality of vectors      172—178 185
Orthogonality, Gram — Schmidt process for      174—175 178
Orthonormal      176
Parallelogram principle      24
Parseval’s identity      178
Partition      213—214 217 220
Pauli matrices      79
Permutation      92
Permutation matrix      109 224—227
Perpendicularity, see Orthogonality Pivot operations      102 222—228
Polynomial, characteristic      128 133 136 157—159 185
Polynomial, minimal      134—137 157—158 185
Polynomial, monic      134
Polynomial, space of      26 28 37 49 57
Positive definite      170 183 188—189
Postulates      14
Postulates, for a Boolean algebra      15
Postulates, for a field      19
Postulates, for a group      18
Postulates, for a linear algebra      49
Postulates, for a vector space      26
Principal Axes Theorem      185—186
Product, dot      165 169 176
Product, inner      169—182
Product, of cosets      216
Product, of linear transformations      45—46
Product, of mappings      13
Product, of matrices      66 78
Projection      47 143—146 161 174—175 178 200
Projection, orthogonal      143 145 174—175 178 200
Projection, supplementary      143 145 200
Proper states      127
Proper values      127
Proper vectors      127
Pythagorean Theorem      177
Quadratic form      182—191
Quadratic form, positive definite      183 188—189
Quadratic form, rank of      187—188
Quadratic form, real symmetric      183
Quadratic form, signature of      187—188
Quadratic function      182—191
Quadric surface      184
Quaternions      51 68
Quotient system      217
Range, of a function      10 210
Range, of a relation      210
Range, space of a linear transformation      52— 54 114 142 153
Rank, of a bilinear form      164
Rank, of a bilinear function      164
Rank, of a linear transformation      52—54
Rank, of a matrix      76—79 85 118
Rank, of a quadratic form      187—188
Reflexive relation      107 213
Relation, binary      209—210
Relation, cosets of a      214 220
Relation, domain of a      210
Relation, equivalence      13 104 106—125 164—168 190—191 213—215 220 222-228
Relation, induced      214—215
Relation, range of a      210
Relation, reflexive      107 213
Relation, symmetric      107 213
Relation, transitive      107 213
Right hand notation      45 77 85
Rigid motion      178—182 185—186
Rotations      21 47 181
Row, equivalence of matrices      110—116
Row, index      64
Row, operations on matrices      108—110
Row, vector      71 77—78 177 180 182
scalar      26
Scalar, matrix      68—69 72 199
Scalar, multiple of a linear transformation      45—46
Scalar, multiple of a matrix      65
Scalar, multiple of a vector      24—26
Scalar, polynomial      134
Scalar, product, see Dot product Schwarz inequality      171—173
Segre characteristic      157—158
Sequences of matrices      193—199
Sequences of numbers      193
Series, of matrices      193—199
Series, of numbers      193
Series, power      193—195
Series, Taylor      190 193
Set      3—10 13—15 17 209-212
Set, proper subset of a      5
Set, subset of a      5
Set, void      4—5
Sets, cartesian product of      8 209
Sets, complementation of      6 15
Sets, difference of      9
Sets, disjoint      6
Sets, equality of      5
Sets, intersection of      6 15 17
Sets, operations on      6 15
Sets, symmetric difference of      9
Sets, union of      6 15 17
Signature of a quadratic function      187—188
Similarity of matrices      120—126 130 136—141 151 156 180 186-187
Similarity, canonical form for      156
Singular linear transformation      55
Singular matrix      70 99
Skew — Hermitian matrix      191
Skew-symmetric matrix      71—72 99 166 168 182—183
Space, see Vector space Stochastic matrix, see Markov matrix Subset      5
Subset, proper      5
Subset, relation      5 15
Subsets, system of      13 15
subspace      29—32
Subspace, $\matnbf{T}$-invariant      54 144—155
Subspace, annihilator of      76
Subspace, cyclic      145
Subspace, mapping of      48
Subspace, null      52—54 142 153
Subspace, orthogonal complement of      175 178
Subspace, range      52—54 114 142 153
Subspace, spanned by characteristic vectors      129 139 145 153
Subspace, spanned by vectors      30
Subspaces, dimensions of      39—40
Subspaces, intersection of      30—32
Subspaces, sum of      30—32
Sum, direct      143—155
Sum, of linear transformaions      45—46
Sum, of matrices      65
Sum, of subspaces      30—32
Sum, of vectors      24—26
Superdiagonal      142
Supplementary projection      143 145 200
Symmetric, difference of sets      9—10
Symmetric, matrix      71—72 120 166—167 183 185-191
Symmetric, relation      107 213
Symmetry, conjugate      170
Symmetry, Hermitian      170
Symmetry, of inner product      170
System of linear equations, augmented matrix of      86
System of linear equations, consistent      87
System of linear equations, equivalence of      101 116 227
System of linear equations, homogeneous      86
System of linear equations, matrix of      84
System of linear equations, non-homogeneous      86
System of linear equations, operations on      100—105
System of linear equations, solution by Cramer’s rule      98—99
System of linear equations, solution by pivot operations      102 222—227
System of linear equations, solution of      84
System, see Abstract systems System of linear equations      84—89 98—105 222-228
Taylor expansion      190 193
Trace of a linear transformation      160—161
Trace of a matrix      159—161 191 198 204
Transitive relation      107 213
Transpose of a matrix      71 85
Transposition      91
Triangle inequality      173
Triangular matrix      69 72 78 128 197
Triangular matrix, strictly      70 72
Tucker, A. W.      222
Union of sets      6 15 17
Unitary, matrix      181 191
Unitary, space      170—171 181 191
Unitary, transformation      179 181
Vandermonde matrix      96 100 199
Vector space      23—43 (see also Subspace)
Vector space, dimension of      38—40
Vector space, dual      75—76 162
Vector space, Euclidean      170 173 175—179
Vector space, inner product      181
Vector space, of $n$-tuples      27 35—36 42
Vector space, of continuous functions      28 170—171
Vector space, of polynomials      26 28 37 49 57
Vector space, of real numbers      27
Vector space, of solutions of a differential equation      28 205 207
Vector space, subspace of      29—32
Vector space, unitary      170—171 181 191
Vector spaces, direct sum of      143—155
Vector, addition      24—26
Vector, characteristic      126—133 135—141 185—186 189 191 201-202
Vector, column      71 77 89 177
Vector, components      23
Vector, length of      162 169 172—179
Vector, multiplication by scalars      24—26
Vector, normal      176
Vector, representation by a matrix      77
Vector, row      71 77—78 177 180 182
Vectors, dot product of      165 169 176
Vectors, inner product of      169—182
Vectors, orthogonal      172—178 185
Vectors, orthonormal      176
Vectors, sum of      24—26
Venn diagrams      5—6
Void set      4—5
Zero, mapping      13
Zero, matrix      65
Zero, subspace      29
Zero, transformation      46
Zero, vector      27
1 2
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå