Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Tutte W.T. — Connectivity in Graphs
Tutte W.T. — Connectivity in Graphs



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Connectivity in Graphs

Àâòîð: Tutte W.T.

Àííîòàöèÿ:

In mathematics, a graph is a representation of a set of objects where some pairs of the objects are connected by links. The interconnected objects are represented by mathematical abstractions called vertices, and the links that connect some pairs of vertices are called edges. Typically, a graph is depicted in diagrammatic form as a set of dots for the vertices, joined by lines or curves for the edges. Graphs are one of the objects of study in discrete mathematics.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1966

Êîëè÷åñòâî ñòðàíèö: 155

Äîáàâëåíà â êàòàëîã: 10.02.2013

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
$\theta$-graph      130 134
1-joining of vertices      72
2-connection      114—126
2-connection and nodal 2-connection      131
2-connection and non-separability      97—98
2-connection modulo [x,y]      114—116
3-bond, infinite connectivity of      99
3-connection      104—113
3-connection and hinges      119
3-connection of wheels      103
3-connection, classification of graphs with      111—113 140
3-connection, classification of trivalent graphs with      140
3-connection, recognition of      137—138
ARC      22—26
Arc and simple path      30
Arc, adjunction of      133—136
Arc, and nodal 2-connection      129—130
Arc, automorphism group of      54
Arc, end of      22
Arc, internal vertex of      22
Arc, part of      24
Arcs, internally disjoint      26
Automorphism group of 2-cage and 3-cage      72
Automorphism group of arc      54
Automorphism group of polygon      54
Automorphism group of Thomsen graph      71
Automorphism group of wheel      102—103
Automorphism of graphs      52—64
Automorphism of graphs, trivial      52
Avoidance of subgraph by arc      23—24
Betti number of dimension 0      13—14 18
Betti number of dimension 1      18
Bipartition      67
Blocking of semi-simple path      30
Blocking of semi-simple path in Euler graph      36
BOND      98
Bond as cleavage unit      125
Bond, absence of hinges in      119
Branch      127—128
Branch, isolated      127
Branch-graph      128
Branch-graph and 3-connection      102
Branch-graph, cage      65 72—81
Circuit      30
Circuit, Euler      36 41—42
Cleavage      120—126
Cleavage graph      120
Cleavage graph and augmented graph      121—126
Cleavage graph, hinges in      121
Cleavage units      124—126
Cleavage units, determination of      137—138
Cleavage units, tree of      125—126
CLIQUE      3 70
Clique, 3-connection of      102
Complement of subgraph      8
Component      13
Component and contractive mapping      45—46
Component modulo a subgraph      11—13 23—26 133
Component modulo a subgraph and separation      84
Component modulo a subgraph in arc      22—23
Component modulo a subgraph in polygon      27
Component modulo a subgraph in tree      20
Component modulo a subgraph, determination of      35
Component modulo a subgraph, inner      35
Component modulo a subgraph, outer      35
Component modulo a subgraph, Y-graph in      26
Connected graphs, classification of      49—50
Connection      13
Connection and 1-connection      97
Connection and spanning trees      21
Connection modulo a subgraph      9—16 84
Connection modulo a subgraph and arcs      23—25
Connection of graph determined by path      28
Connectivity      97—99
Connectivity and symmetry      101—103
Connectivity, infinite      97—99
Cremona — Richmond configuration, and 8-cage      77
cube      4 72
Cut-forest      90—92
Cut-vertex      89
Cyclic connection      95—96
Cyclic connection and cyclic elements      96
Cyclic element      86—92
Cyclic element, characterization of      88—89
Cyclic element, terminal      92
Detachment      9—10
Diameter      65
Distance modulo a subgraph      32—35
Distance of vertex from subgraph      65—67
Distance of vertex from vertex      35
dodecahedron      4 72
EDGE      3
Edge, contraction of, and connectivity      104
Edge, deletion of, and connectivity      103—104
Edge, end of      3
Edge, essential      104—106 110—111
Edge, subdivision of      140—141
Edge, virtual      120—126
Euler      36—42
Euler, inverse of      28
Euler, isthmus-avoiding      40—42
Euler, length of      28
Euler, origin of      28
Euler, re-entrant      29 36 38
Euler, semi-simple      29—30
Euler, simple      30—31
Euler, terminus of      28
Euler, vertex-term of      28
Excisable [x,y]-component      118 120—121
Flag      99—101
Forest      17 18
Forest and arbitrarily traceable graph      39
Forest and polygon      27
Girth and distance      68—70
Girth and s-transitivity      61—62
Girth and valency      70—83
Graph      3
Graph, abstract      48—50
Graph, arbitrarily traceable      38—39
Graph, augmented      121—124
Graph, bipartite      67—68 70—71
Graph, Euler      36
Graph, exterior, in cage      72
Graph, k-separated      97
Graph, regular      54 69—83
Graph, s-regular      62—64
Graph, s-transitive      59—64
Graph, separable      84
Graph, simple      50 98 101
Graph, symmetrical      52
Graph, wings in augmented      122—126
Group      52—53
Group, dihedral      54
Group, order of      52
Group, symmetric      54
Heawood graph      60—62
Heawood graph as 6-cage      74
Hinge      118—121
Hinge, determination of      138
Hinge-component      118—119
Homeomorphism and nodal connectivity      132
Homeomorphism and subdivision      140—141
Homeomorphism of graphs      131—133
incidence      3
Inverse of homeomorphism      132
Inverse of mapping      44—45
Inverse of path      28
Isomorphism of arcs      47
Isomorphism of graphs      46—47
Isomorphism of groups      53
Isomorphism of polygons      47
Isomorphism, class of graphs      46—47
Isthmus      17
Isthmus and connectivity      98
Isthmus and cyclic element      87
Isthmus and Euler graph      40
Isthmus and polygon      27
Isthmus in non-separable graph      84
Isthmus, end-graph of      17 20 23
Isthmus, valencies in end-graph of      40
Joining of vertices by arc      22
Joining of vertices by edge      3
Length of arc      31
Length of path      28
Length of recessional sequence      33
Link      3
Link-graph      3
Link-graph as 1-bond      98
Link-graph, infinite connectivity of      99
Link-graph, non-separability of      84
Loop      3
Loop and connectivity      98
Loop and cyclic element      87
Loop and Euler path      42
Loop in non-separable graph      84
Loop-graph      3
Loop-graph as polygon      26
Loop-graph, infinite connectivity of      99
Loop-graph, non-separability of      84
Lune      26
Lune as 2-bond      98
Lune, infinite connectivity of      99
Mapping of graphs      43—47 116—118
Mapping of graphs, contractive      45—46 92—95
Mapping of graphs, identical      46
Mapping of graphs, inverse of      44—45
Mcgee graph as 7-cage      77—81
Mcgee graph, 3-connection of      102
Multiplicity of vertex in path      29
n-bond      98
n-connection      97
Nodal 2-connection      129—131
Nodal 2-connection and 2-connection      131
Nodal 3-connection      134—136
Nodal 3-connection, classification of graphs with      138—140
Nodal connectivity      129—130
Nodal connectivity and homeomorphism      132
Nodal k-separation      129
Nodal k-separation and k-separation      130—131
Nodal n-connection      129—130
Nodal n-connection and n-connection      129
Nodal subgraph      128—129
Nodal subgraph and homeomorphism      132
Node      127—128
Non-separable graphs      84—86 94—95
Non-separable graphs and loop or isthmus      84
Non-separable graphs, 2-connection of      97
Non-separable graphs, classification of      85—86
Non-separable graphs, connection of      84
Null graph      3
Null graph, advancing      56—59
Null graph, circular      30—32
Null graph, degenerate      28
Null graph, edge-term of      28
Null graph, infinite connectivity of      99
Null graph, non-separability of      84
Null graph, path      28—35
Paths, product of      29
Petersen graph      74
Polygon      26—27
Polygon and arbitrarily traceable graph      38—39
Polygon and bipartite graph      68
Polygon and circular path      30—32
Polygon and isolated branch      127—128
Polygon and isthmus      27
Polygon and nodal 2-connection      130
Polygon as cleavage unit      125
Polygon in Euler graph      36
Polygon, absence of hinges in      119—120
Polygon, automorphism group of      54
Polygon, even      68
Polygon, non-separability of      85
Polygon, odd      68
Polygon, residual arcs in      27
Polygon, sense of description of      32
Product of homeomorphisms      132
Product of homeomorphisms of mappings      43
Product of homeomorphisms of paths      28—29
Product of homeomorphisms, recessional sequence      33
Reduction      5
Reduction, cyclic element as      87
Representative graph of subgraph-pair      14—15
Robertson graph      72 (footnote)
Rotation of re-entrant path      29
s-route      56 58—64
Separation      84—96
Subgraph      5—6
Subgraph, cyclically complete      87—88
Subgraph, detached      13
Subgraph, generated by vertex-set      5
Subgraph, maximal and minimal      9
Subgraph, proper      5
Subgraph, spanning      5
Subgraphs, disjoint      6
Subgraphs, intersection of      6
Subgraphs, union of      6
Subpath      29
Successor of s-route      58—60 62—63
Supergraph      5
Supergraph, proper      5
Thomsen graph      71 112
Tracing a graph      36 37—42
Tracing a path      36
Transitivity on edges      55—56
Transitivity on vertices      55—56
TREE      17—21
Tree of cleavage units      125—126
Tree, spanning      21
Trees, classification of      48—49
Trees, s-transitive      59
Triad in 3-connected graph      105—110
triangle      26
Triangle in 3-connected graph      105—110
Triangle, infinite connectivity of      99
Valency      4—5 19
Valency and connectivity      98
Valency and transitivity      59—60
Valency in subgraphs of Euler graphs      36
Valency of regular graph      54
Vertex      3
Vertex of attachment      6—7 91 93—94
Vertex, filling of, by semi-simple path      30
Vertex, isolated      4 87
Vertex-graph      3
Vertex-graph as cyclic element      87
Vertex-graph, infinite connectivity of      99
Vertex-graph, non-separability of      84
Vertices, adjacent      3
Wheel      102—103
Wheel and classification of 3-connected graphs      112
Wheel in theory of essential edges      110—111
Wing in augmented graph      122—126
Y-graph      25—26
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå