Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Friedman.R. — Algebraic Surfaces and Holomorphic Vector Bundles
Friedman.R. — Algebraic Surfaces and Holomorphic Vector Bundles



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Algebraic Surfaces and Holomorphic Vector Bundles

Автор: Friedman.R.

Аннотация:

This book covers the theory of algebraic surfaces and holomorphic vector bundles in an integrated manner. It is aimed at graduate students who have had a thorough first-year course in algebraic geometry (at the level of Hartshorne's Algebraic Geometry), as well as more advanced graduate students and researchers in the areas of algebraic geometry, gauge theory, or 4-manifold topology. Many of the results on vector bundles should also be of interest to physicists studying string theory. A novel feature of the book is its integrated approach to algebraic surface theory and the study of vector bundle theory on both curves and surfaces. While the two subjects remain separate through the first few chapters, and are studied in alternate chapters, they become much more tightly interconnected as the book progresses. Thus vector bundles over curves are studied to understand ruled surfaces, and then reappear in the proof of Bogomolov's inequality for stable bundles, which is itself applied to study canonical embeddings of surfaces via Reider's method. Similarly, ruled and elliptic surfaces are discussed in detail, and then the geometry of vector bundles over such surfaces is analyzed. Many of the results on vector bundles appear for the first time in book form, suitable for graduate students. The book also has a strong emphasis on examples, both of surfaces and vector bundles. There are over 100 exercises which form an integral part of the text.


Язык: en

Рубрика: Математика/Алгебра/Алгебраическая геометрия/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1998

Количество страниц: 264

Добавлена в каталог: 12.03.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Riemann — Roch theorem for a curve      4 30 57
Riemann — Roch theorem for a surface      4 9 15—16 23 30 57
Ruled surface      see Surface ruled
S-equivalence      154
Sato, Y.      218
Schwarzenberger, R.L.E.      1 2 46 48 49
Segre — Nagata theorem      91 123
Segre, C.      91
Seiberg — Witten invariants      9 278
Seiberg, N.      9
Self-dual connection      see Connection self-dual
Semistable vector bundle      see Vector bundle semistable
Serre duality      16
Serre, J.-P.      37
Seshadri, C.S.      2
Shafarevich, I.R.      1 194
SIMPLE      2 88
Singular support      43
Sirepeon, C.      154
Slant product      205
Spindler, H.      3 310
Splitting principle      28
Stability, $\mu$      2
Stability, Gieseker      2 3 96—97 154
Stability, Gieseker — Maruyama      2
Stability, Mumford — Takemoto      2 86
Stability, slope      2
Stable vector bundle      see Vector bundle stable
Standard quadratic transformation      59
Stein factorization      21
Stein neighborhood      74
Stern, R.      240
Strictly semistable vector bundle      see Vector bundle strictly
Strong minimal model      see Minimal model strong
Sub-line bundle      32
Suitable ample divisor      142
Support      43
Surface, abelian      132 137 293
Surface, Barlow      278
Surface, cubic      129
Surface, Del Pezzo      128—130 306
Surface, Dolgachev      278
Surface, elliptic      1 132 138 281
Surface, elliptic, basic      186
Surface, elliptic, Jacobian      184—186
Surface, elliptic, properly      281
Surface, Euriques      192 278 281 293
Surface, general type      1 7
Surface, Godeaux      278
Surface, good generic      130 138
Surface, Horikawa      282
Surface, hyperelliptic      192 281 293
Surface, K3      3 132—137 139 192 274 281 293
Surface, Kummer      133
Surface, minimal      70
Surface, ruled      117 137
Surface, ruled, geometrically      117
Surface, ruled, rational      113—117
Syzygy module      52
Takemoto, F.      2 3
Tangent bundle to $P^2$      109
Tate—Shafarevich group      185
Tate—Shafarevich group, analytic      187
Taubes, C.H.      307
Termination of adjunction      284
Theta divisor      240
Torelli theorem for K3 surfaces      133
Torsion      26
Torsion free      44 53
Torsion free sheaf on a singular curve      198
Torus      132 192
Tsen's theorem      275
Twisted G-representation      265
Twisted G-representation, standard      265
Type of a quadratic form      8
Uhlenbeck compactification      207
Uhlenbeck — Yau theorem      3
Uhlenbeck, K.      3
Unirational      160 305
Uniruled      305
Unitary connection      see Connection unitary
Universal property of blowing up      60 66
Vaccaro, G.      278
Van de Ven, A.      278
Van der Waerden, B.      64
Vector bundle on $P^1$      see Grothendieck's theorem on vector bundles
Vector bundle on a hyperelliptic curve      2
Vector bundle on an elliptic curve      see Atiyah's theorem on vector bundles
Vector bundle, flat      245
Vector bundle, good      157 308
Vector bundle, regular, on an elliptic curve      227
Vector bundle, semistable      1 86
Vector bundle, stable      1 86
Vector bundle, stable, on $P^2$      2 91—96 109—111 310
Vector bundle, stable, on a blowup      165 260—262 312
Vector bundle, stable, on a curve      1
Vector bundle, stable, on a genus 2 fibration      313
Vector bundle, stable, on a K3 surface      310
Vector bundle, stable, on a ruled surface      310
Vector bundle, stable, on a singular curve      199
Vector bundle, stable, on an abelian surface      310
Vector bundle, stable, on an elliptic surface      311
Vector bundle, strictly semistable      86
Vector bundle, unstable      86
Verlinde formula      3
Veronese surface      113 117
Walls of type (w,p)      100
Weak isomorphism      31
Weierstrass equation      179
Weierstrass model      179
Whitney product formula      28
Witten, E.      3 9
Wu formula      8 16 189
Xia, Qi      307
Yau, S.-T.      3
Zariski tangent space      156
Zariski's connectedness theorem      67
Zariski's main theorem      64
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте