Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Singer M.F., Saunders B.D., Caviness B.F. — Extension of Liouville's theorem on integration in ginite terms
Singer M.F., Saunders B.D., Caviness B.F. — Extension of Liouville's theorem on integration in ginite terms

Читать книгу
бесплатно

Скачать книгу с нашего сайта нельзя

Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Extension of Liouville's theorem on integration in ginite terms

Авторы: Singer M.F., Saunders B.D., Caviness B.F.

Аннотация:

In Part I of this paper, we givc an extension of Liouville's Theorem and give a nutnber ol examples which show that Integration with special functions involves some phenomena that do not occur in Integration with the elementary functions alone. Our main result generalizes Liouville's Theorem by allowing, in addition to the elementary functions, special functions such as the error Function, Fresnel integrals and the logarithmic integral (but not the dilogorithm or exponential integral) to appear in ihe integral of an elementary funetion. The basic conclusion is that these functions, if they appear, appear linearly. We give an algorithm which decides if an elementary funetion, built up using only exponential functions and rational Operations has an integral which can be expressed in terms of elementary functions and error functions.


Язык: en

Рубрика: Математика/

Тип: Статья

Статус предметного указателя: Неизвестно

ed2k: ed2k stats

Год издания: 1984

Количество страниц: 13

Добавлена в каталог: 01.12.2012

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2017
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте