|
|
Авторизация |
|
|
Поиск по указателям |
|
|
|
|
|
|
|
|
|
|
Noble B. — Methods based on the Wiener-Hopf technique for the solution of PDEs |
|
|
Предметный указатель |
Wedges, diffraction by 219
Weitz, M. and Keller, J. B. 134
Whittaker functions 200 213
Widder, D. V. 27 36
Wiener, N. and Hopf, E. 41 167 168
Wiener-Hopf complex variable equation (for exact solutions) from an integral equation 68 168
Wiener-Hopf complex variable equation (for exact solutions), basic-procedure 36ff
Wiener-Hopf complex variable equation (for exact solutions), derived by Jones’s method 55 79 84 101 125 150
Wiener-Hopf complex variable equation (for exact solutions), general solutions 79ff 89 222ff 228
Wiener-Hopf complex variable equation (for exact solutions), reduction to linear algebraic equations 174
| Wiener-Hopf complex variable equation (for exact solutions), rom dual integral equations 150 151 221
Wiener-Hopf complex variable equation (for exact solutions), solutions for simple cases 55ff 68ff
Wiener-Hopf complex variable equation, formulations of 181ff 187ff 203ff 233 236
Wiener-Hopf complex variable equation, generalized (for approximate solutions) 178
Wiener-Hopf complex variable equation, solutions of 184ff 196ff
Wiener-Hopf equations, general considerations 151
Wiener-Hopf integral equations by physical reasoning 90 131 177
Wiener-Hopf integral equations by transforms 4 65ff
Wiener-Hopf integral equations, formulation by Green’s functions 61ff 89 132
Williams, W. E. viii 196 207 208
|
|
|
Реклама |
|
|
|