Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Kay S.M. — Fundamentals of statistical signal processing: estimation theory
Kay S.M. — Fundamentals of statistical signal processing: estimation theory



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Fundamentals of statistical signal processing: estimation theory

Àâòîð: Kay S.M.

ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1993

Êîëè÷åñòâî ñòðàíèö: 604

Äîáàâëåíà â êàòàëîã: 11.11.2012

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
ACF      see "Autocorrelation"
Adaptive beamforming      544—548
Adaptive filters, Kalman      439 see sequential"
Adaptive filters, noise canceler      268—273 see sequential"
Analytic signal      497 551
ar      see "Autoregressive"
ARMA      see "Autoregressive moving average"
Asymptotic Cramer — Rao lower bound      51 77—81
Asymptotic efficiency      38—39 160 164
Asymptotic Gaussian PDF, complex      535
Asymptotic Gaussian PDF, real      80
Asymptotic mean and variance      295 301—302 305—306
Asymptotic MLE      190
Asymptotic probability density function of MLE      164
Asymptotic unbiasedness      38 160
Autocorrelation method of linear prediction      198
Autocorrelation, definition      575
Autocorrelation, estimator      197 204 267
Autoregressive moving average, definition      266
Autoregressive moving average, dynamic model      468
Autoregressive moving average, estimation      266—268
Autoregressive, CRLB      59—62 see
Autoregressive, definition      59—60 578 see
Autoregressive, MLE      196—198 see
Autoregressive, power spectral density, complex process      497—498 see
Autoregressive, prediction      414 see
Beamforming, conventional      547
Bearing estimation      3 57—59 195—196
Bernoulli trial      123 200
Best linear unbiased estimator, complex data      523—524
Best linear unbiased estimator, covariance errors      150
Best linear unbiased estimator, definition      134 137 139—140
Best linear unbiased estimator, derivation      151—155
Best linear unbiased estimator, linear model      141
Best linear unbiased estimator, transformations      135 147 149—150
Bias error      18
Biomedical signal processing      23
blue      see "Best linear unbiased estimator"
CCF      see "Cross-correlation"
Chirp rate estimator      553
Communications, channel equalization      365
Communications, coherent demodulation      273
Communications, on-off keying      148
Complete sufficient statistic      109—112 119
Complex envelope      494
Conditional mean estimator      see "Minimum mean square error estimator" "Bayesian"
Consistency, estimator      24 161 200
Correlation coefficient, conditional Gaussian PDF      323
Correlation coefficient, CRLB      66
Correlation coefficient, definition      64
Correlation coefficient, least squares      241
Correlation coefficient, MLE      200 304
Correlation time      50 77—78 535
Correlator, signal      192
Cost function      342
Covariance matrix, complex, definition      501
Covariance matrix, complex, properties      505—506 555—557
Cramer — Rao lower bound, asymptotic      51 77—81
Cramer — Rao lower bound, complex Gaussian      525
Cramer — Rao lower bound, definition      22 30 39—40 44
Cramer — Rao lower bound, Gaussian PDF      47—48
Cramer — Rao lower bound, signals in WGN      36 48
Cramer — Rao lower bound, transformed parameters      37 45
CRLB      see "Cramer — Rao lower bound"
Cross-correlation      514 575
Cross-power spectral density      576—577
Curve fitting, CRLB      65
Curve fitting, least squares      232—235
Curve fitting, linear model      86—88
CWGN      see "White Gaussian noise complex"
Cyclical data      see "Sinusoidal estimation"
DC level in noise      see "Examples"
DC level in noise, definition      31
Deconvolution      365—370
Derivative, complex      499—500 517 519—521
Detection, jump in level      278
Detection, sinusoidal      98—99 148—149 554
DFT      see "Discrete Fourier transform"
Digital filter design, equation error      261—265
Digital filter design, least squares      280—281
Discrete Fourier transform, normalization of      511
Discrete Fourier transform, orthogonality      89 569—570
Discrete Fourier transform, PDF for WGN      509—511 537
Dispersive channel      452
Efficiency, estimator      34 38—39 84—86 160 167 187 528
Eigenanalysis of covariance matrix      147—148 537
Eigenvalue/eigenvector      573
em      see "Expectation-maximization"
entropy      336
Equation error modeling      266
Error ellipse      364
Estimators, classical vs. Bayesian      8 309 312
Estimators, combining      17
Estimators, definition      9
Estimators, performance      9—12 24 295 see mean
Estimators, selection, rationale for      489—490
Estimators, summary, Bayesian      484—485
Estimators, summary, classical      480—483
Examples, adaptive beamformer      544—548
Examples, adaptive noise canceler      268—273
Examples, autoregressive parameters in ARMA, LSE      266—268
Examples, autoregressive parameters, CRLB      59—62
Examples, autoregressive parameters, MLE      196—198
Examples, bandpass Gaussian noise      515—517
Examples, bearing, CRLB      57—59
Examples, bearing, MLE      195—196
Examples, channel estimation      452—456
Examples, covariance matrix scale factor, Bayesian estimation      329—330
Examples, curve fitting, MVU estimator      86—88
Examples, DC level and exponential in WGN, MVU estimator      96—97
Examples, DC level in colored noise, complex BLUE      523—524
Examples, DC level in colored noise, MVU estimator      95—96
Examples, DC level in noise, LSE      221
Examples, DC level in non-Gaussian noise      172—173
Examples, DC level in uncorrelated noise, BLUE      138—139
Examples, DC level in WGN, amplitude and variance sufficient statistics      118
Examples, DC level in WGN, amplitude and variance, MAP estimator      355—358
Examples, DC level in WGN, amplitude/variance, MLE      158—163
Examples, DC level in WGN, biased estimator      17
Examples, DC level in WGN, CRLB for amplitude      31—32
Examples, DC level in WGN, CRLB for amplitude and variance      40—41
Examples, DC level in WGN, CRLB for random amplitude variance      49—50
Examples, DC level in WGN, Gaussian prior, MMSE estimator      317—321 326—328 360—361
Examples, DC level in WGN, method of moments      291—292
Examples, DC level in WGN, MLE for amplitude      163—164
Examples, DC level in WGN, MLE for amplitude and variance      183
Examples, DC level in WGN, MLE Monte Carlo performance      164—166
Examples, DC level in WGN, MVU amplitude and variance estimator from sufficient statistic      119—122
Examples, DC level in WGN, MVU amplitude estimator from sufficient statistic      107—109
Examples, DC level in WGN, sequential LMMSE estimator      392—393
Examples, DC level in WGN, sequential LSE      243—248
Examples, DC level in WGN, sufficient statistic      105
Examples, DC level in WGN, transformed parameter MLE      173—177
Examples, DC level in WGN, unbiased estimator      16
Examples, DC level in WGN, uniform prior, LMMSE estimator      383
Examples, DC level in WGN, uniform prior, MAP estimator      352—353
Examples, DC level in WGN, uniform prior, MMSE estimator      315
Examples, DC level in white noise, BLUE      137—138
Examples, digital filter design, LSE      261—265
Examples, discrete Fourier transform, PDF of CWGN      535—537
Examples, discrete Fourier transform, PDF of WGN      509—511
Examples, exponential PDF parameter transformation, MAP estimator      358—359
Examples, exponential PDF parameter, MAP estimator      351—352
Examples, exponential PDF parameter, method of moments      292 295—297
Examples, exponential signal in WGN, MLE      178—182
Examples, exponential signal in white noise, ad-hoc estimator      298—299
Examples, exponential signal, LSE      257—258
Examples, Fourier analysis, Bayesian      347—349 362—364 399—400
Examples, Fourier analysis, LSE      226—227 230—231
Examples, Fourier analysis, MVU estimator      88—90
Examples, Fourier analysis, sequential LSE      250—251
Examples, frequencies of sinusoids, EM estimator      187—189
Examples, frequency of sinusoid, CRLB      36
Examples, frequency of sinusoid, method of moments      299—304
Examples, frequency of WSS process, center, CRLB      51—53
Examples, Gauss — Markov model      427—428
Examples, Gaussian mixture parameters      290—291 293—294
Examples, Hermitian form, mean and variance      512—513
Examples, Hermitian function, minimization      521—523
Examples, identification of FIR system, MVU estimator      90—94
Examples, Kalman filter      436—438 443—445
Examples, line fitting, CRLB      41—43
Examples, line fitting, order-recursive LSE      237—240
Examples, linear model, classical complex      529—530
Examples, localization, source, BLUE      142—146
Examples, mean of uniform noise, MVU estimator      113—116
Examples, moving average, MLE      190—191
Examples, MVU estimator, possible nonexistence of      20—21
Examples, orthogonal random variables, LMMSE estimator      388—389
Examples, PDF parameter dependence      28—31
Examples, periodogram spectral estimation      538—539
Examples, phase of complex sinusoid, MLE      531—532
Examples, phase of sinusoid, CRLB      33—34
Examples, phase of sinusoid, MLE      167—172
Examples, phase of sinusoid, sufficient statistic      106—107
Examples, phase-locked loop      273—275
Examples, power of noise, CRLB      49
Examples, power of noise, sufficient statistic      105
Examples, range, CRLB      53—56
Examples, range, MLE      192
Examples, signal amplitude estimation, complex LSE      498—500
Examples, signal in non-Gaussian noise, MLE      184—185
Examples, signal in WGN, CRLB      48
Examples, signal, constrained LSE      252—254
Examples, signal-to-noise ratio, CRLB      46
Examples, sinusoidal amplitude, LSE      255—256
Examples, sinusoidal complex amplitude, MMSE estimator      534—535
Examples, sinusoidal modeling, complex      496—497
Examples, sinusoidal parameters, complex MLE      539—544
Examples, sinusoidal parameters, CRLB      56—57
Examples, sinusoidal parameters, LSE      222—223
Examples, sinusoidal parameters, MLE      193—195
Examples, sinusoidal parameters, sufficient statistics      117—118
Examples, sinusoidal power, complex MVU estimator      525—527
Examples, sufficient statistic verification      103—104
Examples, sufficient statistic, completeness of      110—111
Examples, sufficient statistic, incompleteness of      111—112
Examples, vehicle tracking      456—466
Examples, Wiener filtering      365—370 400—409 443—445
Expectation-Maximization      182 187—189
Exponential PDF family, definition      see "Probability density functions"
Exponential PDF family, MLE      200
Exponential signals, estimation      257—258 298—299
Fading signal      100 452
Finite impulse response filter      90—94
FIR      see "Finite impulse response filter"
Fisher information, decoupled matrix      41 65
Fisher information, definition      34 40
Fisher information, properties      35 65
Fourier analysis      88—90 226—227 250—251 347—349 362—364 399—400
Frequency estimation      see "Sinusoidal estimation and Examples"
Gauss — Markov process, definition      421 426 430—431
Gauss — Markov process, properties      424 429
Gauss — Markov theorem      141 143 552
Gauss — Newton iteration      260
Gaussian random process      467 513 577—578
Gradient formulas      73—74 84 519—521
Gram — Schmidt orthogonalization      236 396 411
Grid search      177
Hermitian form, definition      502
Hermitian form, minimization      521—523
Hermitian form, moments      502—503 513
histogram      10 165 206—207 209
Image signal processing      365
In-phase signal      495—496
Innovations      396 433 441
interference suppression      270
Interpolation      412
Kalman filter, definition      436 446—449 455
Kalman filter, derivation      471—475
Kalman filter, extended      451—452 462 476—477
Kalman filter, gain      436 447
Kalman filter, information form      449
Kalman filter, steady state      443
Least squares, BLUE, relationship with      225
Least squares, constrained      252
Least squares, definition      220—221
Least squares, estimator      225
Least squares, modified Yule — Walker equations      268
Least squares, nonlinear      222 254
Least squares, numerical determination      259—260
Least squares, order-recursive      237 282—284
Least squares, separable      222—223 256—257
Least squares, sequential      249 279 286—288
Least squares, weighted      150 225—226 244—248 270
Levinson recursion      198 403
Likelihood function, definition      29
Likelihood function, modified      175 185
Line arrays      58 145
Line fitting      41 83—84 237—240 373
Linear minimum mean square error estimator, definition      380—382 389
Linear minimum mean square error estimator, properties      390
Linear minimum mean square error estimator, sequential      393 398 415—418
Linear minimum mean square error estimator, vector space interpretation      386
Linear model (Bayesian), definition      325
Linear model (Bayesian), Kalman filter modeling      447
Linear model (Bayesian), MMSE estimator      364—365 533—534
Linear model (Bayesian), properties      487—489
Linear model (classical), CRLB      85
Linear model (classical), definition      84 94—95 97 529—530
Linear model (classical), efficiency      85—86
Linear model (classical), estimator and properties      85 486—488
Linear model (classical), line fitting      45
Linear model (classical), MLE      186
Linear model (classical), reduced      99 254
Linear model (classical), sufficient statistics      126
Linear Predictive Coding      5 59 198 407
Linear random process      77
LMMSE      see "Linear minimum mean square error estimator"
Localization, source      142—146 456—466
LPC      see "Linear predictive coding"
LS, LSE      see "Least squares"
Lyapunov equation      430
MA      see "Moving average"
MAP      see "Maximum a posteriori estimator"
Matrix, autocorrelation      62 93
Matrix, determinant      567
Matrix, diagonal      568—569
Matrix, eigenanalysis      573
Matrix, hermitian      501
Matrix, idem potent      194 570
Matrix, ill-conditioned      85 98 240—241
Matrix, inversion, definition      567
Matrix, inversion, lemma      571
Matrix, inversion, Woodbury's identity      571
Matrix, orthogonal      569
Matrix, partitioned      571—572
Matrix, positive definite (semidefinite)      568 572
Matrix, projection      231 242 277 285
Matrix, square      567
Matrix, symmetric      567
Matrix, Toeplitz      62 93 570
Matrix, trace      568
Matrix, transpose      567
Maximum a posteriori estimator, definition      344 351 354 372
Maximum a posteriori estimator, properties      358 372
Maximum likelihood estimator, asymptotic      190
Maximum likelihood estimator, Bayesian      352
Maximum likelihood estimator, complex data      530—531 563—565
Maximum likelihood estimator, definition      162 182
1 2
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå