Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Borovkov A.A. — Ergodicity and Stability of Stochastic Processes
Borovkov A.A. — Ergodicity and Stability of Stochastic Processes



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Ergodicity and Stability of Stochastic Processes

Àâòîð: Borovkov A.A.

Àííîòàöèÿ:

Dedicated to the study of ergodicity and stability of stochastic processes this book provides a thorough and up-to-date investigation of these processes. The author is at the forefront of this growing area of research and presents novel results as well as established ideas. The term "stability" is used in this book to describe continuity properties of stationary distributions with respect to small perturbations of local characteristics. Comprising three parts, the first eloquently demonstrates the general theorems of ergodicity and stability for a comprehensive number of classes of Markov chains, stochastically recursive sequences and their generalizations. Expanding on the introduction, the second part considers ergodicity and stability of multi-dimensional Markov chains and Markov processes. For one-dimensional Markov chains special attention is paid to large deviation problems and transient phenomenon. Drawing upon the results presented throughout the book the final part considers their application in establishing conditions of ergodicity in communication and queueing networks. In particular, two types of polling systems are considered; Jackson networks and buffered random access systems related to the ALOHA algorithm. This text will have broad appeal to statisticians and applied researchers seeking new results in the theory of Markov models and their application.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1998

Êîëè÷åñòâî ñòðàíèö: 585

Äîáàâëåíà â êàòàëîã: 02.03.2006

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Moments estimates      467—500
Moments of large deviations, estimates      467—500
Moments random variables, estimates      467—484
Moments random walks      370—371
Multi-dimensional processes      277—316
Multiple access synchronous broadcasting channel, use of term      539
Non-Harris chains ergodicity conditions      246 284
Non-Harris chains ergodicity studies      55—56
Non-Harris chains examples      57—60
Non-Harris chains phenomena      76
Non-Harris chains positivity conditions      62
Normal law, convergence to      444—450
Notation, Markov chains, issues      417—418
Octants transitory      389
Octants, definition      278
Octants, ergodic      389
Octants, weakly negative      389
Ordering operator, definition      82
Orthants, definition      278
Periodicity, stochastically recursive sequences      148
Planes      see also hyperplanes
Planes entire, random walks in      357—366
Planes, half, random walks in      344—357
Planes, infinitely distant      372
Poisson distributions      282 412 536
Poisson processes      549
Poisson processes, independent      505
Poisson processes, input      515—516 523 536
Poisson processes, oscillating      226
Poisson processes, point      411
Polling rings, use of term      506
Polling systems      504—529
Polling systems convergence rates, estimates      521—522
Polling systems cycles, duration      526
Polling systems ergodicity      506—521 549—543
Polling systems of first kind      504—522
Polling systems of second kind      523—514
Polling systems, cyclic, ergodicity      506
Positive recurrence, Markov chains, multi-dimensional      245—275
Positivity conditions, approaching times method      45—49
Positivity conditions, Lyapunov method      37—43
Positivity conditions, Markov chains      36—49
Positivity conditions, non-Harris chains      62
Probabilities      see also transition probabilities
Probabilities convergence      90—91
Probabilities of large deviations      293—316 521—522
Probabilities of large deviations, estimates      467—500
Probabilities taboo      28 37
Probabilities, boundedness in      137 209—215
Probabilities, invariant      5
Probabilities, Markov chains, one-dimensional      277—316
Probabilities, random variables, estimates      467—484
Probabilities, random walks, bounds      485—496
Probabilities, random walks, estimates      467—500
Probability densities      69
Probability distributions, invariant      17
Processes      see also diffusion processes; jump processes; Markov processes; Poisson processes; semi-Markov processes; stochastic processes; Wiener processes
Processes, Asmussen      236
Processes, asymptotically homogeneous, regular      318—319
Processes, embedded, applications      236
Processes, ergodic      348
Processes, induced      335
Processes, multi-dimensional      277—316
Prokhorov theorem      115
Quadrants, definition      278
Quadrants, ergodic      374
Quadrants, transitory      373—374 387
Quadrants, weakly negative      372—373
Queueing networks      see also communication networks; Jackson networks
Queueing networks ergodicity      501—558
Queueing networks historical background      502
Queueing networks stability      501—558
Queueing networks, multi-channel      196
Queueing networks, use of term      501—502
Queueing systems      see also polling systems
Queueing systems behaviour, under heavy traffic conditions      424
Queueing systems communication channels      538—544
Queueing systems continuous-time processes      240
Queueing systems service times      503
Queueing systems, inter-arrival times      503
Queueing systems, multi-server      502
Queueing systems, one-channel, virtual waiting time      223
Random access communication convergence rates, estimates      546
Random access communication ergodicity      539—531
Random access communication systems      537—547
Random transformations, and ergodicity conditions      78—108
Random variables Gamma-distribution      452 456
Random variables moments, estimates      467—484
Random variables notation      485—486
Random variables probabilities, estimates      467—484
Random variables recurrence time      493—496
Random variables sums, in random walk generation      485—496
Random variables, class of      16
Random variables, random, uniformly integrable      331
Random walks bounded jumps      248
Random walks classification      278—279
Random walks ergodicity, conditions      369—372
Random walks in entire plane      357—366
Random walks in entire plane, minimum conditions      369
Random walks in half-plane      344—357
Random walks in positive octant, d-dimensional      388—393
Random walks in positive octant, three-dimensional      370—388
Random walks in strips      366—368
Random walks moments bounds      485—496
Random walks moments conditions      370—371
Random walks moments estimates      467—500
Random walks over three-dimensional cones      262
Random walks probabilities bounds      485—496
Random walks probabilities, estimates      467—500
Random walks regularity conditions      370—371
Random walks spiral motion      383 387—388 389 390
Random walks stationary distributions      543
Random walks stopping times      468
Random walks trajectories      102
Random walks, asymptotically homogeneous      279—281 285—286
Random walks, asymptotically homogeneous, ergodicity      317—343
Random walks, asymptotically homogeneous, in positive quadrant      317—344
Random walks, asymptotically homogeneous, stability      343—344
Random walks, homogeneous      293
Random walks, marked Markov, estimates      496—500
Random walks, multi-dimensional      277—274
Random walks, multi-dimensional, ergodicity      281—282 503
Random walks, non-ergodic      96 324
Random walks, one-dimensional, stationary distributions      371
Random walks, oscillating      58 208
Random walks, oscillating, ergodicity      72
Random walks, oscillating, large deviations      292
Random walks, oscillating, stationary distributions      290—291
Random walks, partially homogeneous      280—281 285—286
Random walks, partially spatially homogeneous      266—269 375
Random walks, regular      263 345
RC      see recursive chains
Real lines, Markov chains on      289—293
Recurrence time, random variables      493—496
Recursive chains      see also stochastically recursive sequences
Recursive chains and stationary sequences      180—181
Recursive chains ergodicity      178—195
Recursive chains ergodicity general criteria      178—195
Recursive chains ergodicity sufficient conditions      184—195
Recursive chains ergodicity under non-stationary control      184
Recursive chains governing sequences, independent elements      231—236
Recursive chains in communication networks      166—167
Recursive chains in communication systems      501
Recursive chains properties      165—175
Recursive chains reduction, to stochastically recursive sequences      174—178
Recursive chains stability theorem      137
Recursive chains stationary distributions, stability      216—220
Recursive chains strong coupling-convergence      233
Recursive chains, definitions      135—137 165—174
Recursive chains, embedded, definitions      230—231
Recursive chains, embedded, ergodicity      230—241
Recursive chains, embedded, example processes      240—241
Recursive chains, embedded, stationary control      239—240
Recursive chains, homogeneous      178
refinements      485—496
Regularity conditions, random walks      370—371
Renewal Theorem      488
Renovation events existence      503
Renovation events stochastically recursive sequences      224
Renovation events structure      195—198
Renovation events, definition      140
Renovation events, non-stationary      142 145—147 151
Renovation events, stationary      150
Renovation events, stationary, conditions      195—215
Renovation events, stationary, positive      149 155 158 239
Renovation events, stationary, sequences      152—155
Rosenthal — Burkholder moment inequality      469
Semi-Markov processes ergodic theory      237
Semi-Markov processes studies      237
Semimartingales      206
SMPP      see stationary marked point processes
Solutions, stabilization of      400
SRS      see stochastically recursive sequences
Stability diffusion processes, multidimensional      395—416
Stability general theorems      1—241
Stability of stationary distributions      49—53 413—416
Stability of stationary distributions, recursive chains      216—220
Stability theorems, diffusion processes      413
Stability theorems, Harris chains      52—53
Stability, arbitrary Markov chains      130—133
Stability, communication networks      465—558
Stability, Feller Markov chains, general theorems      114—118
Stability, Markov chains on half-lines      287—289
Stability, Markov chains, multi-dimensional      243—463
Stability, Markov chains, one-dimensional      277—316
Stability, Markov chains, two-dimensional      317—368
Stability, Markov processes      243—463
Stability, queueing networks      501—558
Stability, random walks, asymptotically homogeneous      343—344
Stability, random walks, three-dimensional      388
Stationary distributions approximations      417—463
Stationary distributions diffusion processes      410—411
Stationary distributions limit theorems      418
Stationary distributions stability      49—53 413—416
Stationary distributions stability, recursive chains      216—220
Stationary distributions, Markov chains      291—292
Stationary distributions, Markov chains moments      425
Stationary distributions, random walks      543
Stationary distributions, random walks, one-dimensional      371
Stationary distributions, random walks, oscillating      291—291
Stationary distributions, two-dimensional      373
Stationary marked point processes, definitions      239
Stationary sequences and recursive chains      180—181
Stationary sequences conditions      140
Stationary sequences renovation events      152—155
Stationary sequences, arbitrary      142 163—164
Stochastic continuity in variation      226
Stochastic continuity, asymptotic      226
Stochastic processes ergodicity, in continuous and discrete time      221—241
Stochastic processes in communication systems      501
Stochastically recursive sequences      135—226
Stochastically recursive sequences and generating transformations      162—165
Stochastically recursive sequences and Markov chains, compared      139—140
Stochastically recursive sequences and Markov chains, ergodicity conditions      156—161
Stochastically recursive sequences convergence rates, estimates      162
Stochastically recursive sequences coupling-convergence      148—149 152—154
Stochastically recursive sequences coupling-convergence, strong      149—152 154—155 158
Stochastically recursive sequences ergodicity conditions      136 224
Stochastically recursive sequences ergodicity conditions, Harris-type      135—162
Stochastically recursive sequences in communication systems      501
Stochastically recursive sequences renovation events      140 224
Stochastically recursive sequences with enriched control      137
Stochastically recursive sequences, continuous and discrete time      221—225
Stochastically recursive sequences, definitions      135 139
Stochastically recursive sequences, embedded      240—241
Stochastically recursive sequences, generalized      223
Stochastically recursive sequences, Harris type      165
Stochastically recursive sequences, homogeneous      175
Stochastically recursive sequences, non-stationary, ergodicity      152—154
Stochastically recursive sequences, periodicity      148
Stochastically recursive sequences, real-valued, V-inducing sequences      198—206
Stochastically recursive sequences, recursive chain reduction to      174—178
Stochastically recursive sequences, use of term      139
Stopping times, definition      42
Stopping times, Markov      327 332 334
Stopping times, random walks      468
Strips, random walks in      366—368
Strong coupling-convergence recursive chains      233
Strong coupling-convergence stochastically recursive sequences      149—152 154—155 158
Supermartingales      206
Synchronous broadcast channels, multiple access      166
Taboo probabilities      28 37
Taylor expansion      449
Taylor formula      127 129 309 428 432 435 457
Test functions      245
Test functions mean drift      436 438
Time processes, stochastic, ergodicity      221—241
Token polling rings, use of term      506
Trajectories cycles      34
Trajectories deviations      32—35
Transformations      see also Lipschitz transformations
Transformations analytical properties, stochastically recursive sequences      162—165
Transformations contraction      136
Transformations Lipschitz contracting, ergodicity      82—91
Transformations, monotonic, ergodicity conditions      79—82
Transformations, random, and ergodicity conditions      78—108
Transition functions      57
Transition functions as differential equation solution      398
Transition functions Markov processes      226
Transition functions, random      221
Transition kernels continuity      67—78
Transition kernels positivity      67—78
Transition kernels, weak      418
Transition phenomena Markov chains classification      451—463
Transition phenomena Markov chains theorems      420—424 425—450
Transition phenomena Markov chains, one-dimensional      417—463
Transition probabilities      49 399
Transition probabilities and ergodicity      67—78
Transition probabilities continuity      53
Transition probabilities contraction property      57
Transition probabilities convergence, conditions      61
Transition probabilities densities      287
Transition probabilities tightness      62
Transition probabilities weak convergence      57—60
Transition probabilities, continuous      115
Transition probabilities, Markov chains      168 339
V-inducing sequences construction      137
V-inducing sequences, existence of      197—198
V-inducing sequences, existence of, arbitrary state space      206—208
V-inducing sequences, existence of, conditions      198—206 214—215
Vectors convergence      79—80
Vectors diffusion processes      404
Vectors, multi-dimensional      277—278
Vectors, waiting time      196
Virtual waiting time in queueing systems      223 241
von Bahr — Esseen moment inequality      469
Wald identity      234 270 332 468
Wiener processes      223 407 411
Wiener processes, d-dimensional      396
1 2
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå