Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Bini D., Pan V.Y. — Polynomial and matrix computations. Fundamental algorithms. Vol.1
Bini D., Pan V.Y. — Polynomial and matrix computations. Fundamental algorithms. Vol.1



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Polynomial and matrix computations. Fundamental algorithms. Vol.1

Авторы: Bini D., Pan V.Y.

Аннотация:

Matrix and polynomial computations are fundamental to the theory and practice of computing. The authors present a systematic treatment of algorithms and complexity in these two related areas. Their study of computations with Toeplitz matrices and other dense structured matrices demonstrates the links between numerical and algebraic approaches to computation, both of which are extensively applied. Primarily a text for advanced graduate students in mathematics and computer science, but also useful for designers of algorithms and software and for researchers in algebraic computing, numerical computational mathematics, and numerical analysis.


Язык: en

Рубрика: Математика/Алгебра/Вычислительная алгебра/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1994

Количество страниц: 424

Добавлена в каталог: 12.03.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Machine precision      292
Mantissa      291
Markov parameters      155
Matrix algebra      134 186 209 215 216 220
Matrix block      92
Matrix determinant      86 96
Matrix diagonal      86
Matrix factorizations      See factorization
Matrix generator      88 108
Matrix identity      86
Matrix inversion      87 96
Matrix kernel      89
Matrix multiplication      94
Matrix norms      90 124
Matrix operator      174—200 217
Matrix permutation      86
Matrix powers      97
Matrix rank      88 108
Matrix reversion      127
Matrix spectrum      87
Matrix tame      88 89 109 204
Matrix, $\tau$      186—188 215
Matrix, adjugate (adjoint)      86
Matrix, anticirculant      132 215
Matrix, banded      208
Matrix, Bezout      155 156 310
Matrix, Cauchy      127 129
Matrix, Cauchy-like      180
Matrix, characteristic polynomial of a      87 96 190 316
Matrix, circulant      132—135 215
Matrix, companion      116
Matrix, condition number of a      91 124
Matrix, dense structured      81 82
Matrix, dense unstructured      See general
Matrix, diagonally dominant      92 212
Matrix, down-shift      127
Matrix, eigenvalues      87 115
Matrix, f-circulant      132—135 181
Matrix, Fourier      12 128 220
Matrix, Frobenius      116 155 216 220
Matrix, general      81 332
Matrix, generalized Hubert      127 129 131
Matrix, generalized inverse      112
Matrix, generic      205
Matrix, h.n.d.      88
Matrix, h.p.d.      88
Matrix, Hankel      48 132 155
Matrix, Hankel-Like      180 337—350
Matrix, Hartley      216
Matrix, hermitian      88
Matrix, Hilbert-like      180
Matrix, irreducible      120
Matrix, Krylov      92 97
Matrix, Loewner      217
Matrix, lower triangular      86
Matrix, minimum polynomial of a      88 96
Matrix, nonderogatory      120
Matrix, nonsingular      87
Matrix, null      86
Matrix, null space of a      89 95 105
Matrix, orthogonal      86
Matrix, range      89
Matrix, real symmetric      88
Matrix, representation of Euclid's algorithm      147—149
Matrix, resultant      149
Matrix, similar      116
Matrix, singular      87
Matrix, sparse      81 118 172
Matrix, spectral radius      87
Matrix, strongly nonaingular      87 100 136 212
Matrix, structured      See Dense structured
Matrix, subresultant      149
Matrix, Sylvester      149
Matrix, symmetric      88
Matrix, Toeplitz      132
Matrix, Toeplitz-like      180 191 337—350
Matrix, transposed      7
Matrix, transposed Vandermonde      63
Matrix, triangular      86
Matrix, tridiagonal      117 113 214
Matrix, unit triangular      86
Matrix, unitary      88
Matrix, upper triangular      86
Matrix, Vandennonde-like      180
Matrix, Vandermonde      127 128
Matrix-by-vector multiplication      94
Maximal linearly independent subset      109 368
MIN-POL      96 320 334
Minimum polynomial      88 96
Minimum span (of a recurrence)      47 140
MOD-POL-RECIPR      27 41
Model of computation      3 70—73
Modified (m, n) Hermite interpolation problem      45
Modular reduction      25
Modular, arithmetic      241
Modular, representation of a polynomial      27 31
Modular, rounding-off      241
Monte Carlo algorithms      5 72
Moore — Penrose generalized inverse      90 112 196 220
Multigrid      187 266—273 314
Multiplication of a vector by a Cauchy (Hilbert) matrix      261 312
Multiplication of a vector by a matrix      94
Multiplication of a vector by a transposed Vandermonde matrix      65 143
Multiplication of a vector by a Vandermonde matrix      128 312
Multiplication of a vector by the inverse of a Cauchy matrix      130 312
Multiplication of a vector by the inverse of a Hankel matrix      133
Multiplication of a vector by the inverse of a Toeplitz matrix      133
Multiplication of a vector by the inverse of a transposed Vandermonde matrix      143
Multiplication of a vector by the inverse of an f-circulant matrix      133
Multiplication of a vector by the inverse of Vandermonde matrix      128 312
Multiplication of integers      17
Multiplication of matrices      94
Multiplication of multivariate polynomials      61
Multiplication of several polynomials      12
Multiplication of two polynomials      13 23 56 277;
Multiplicity      32
Multivariate monomial      43
Multivariate polynomial      43 61—65
Multivariate polynomial interpolation      64
Multivariate polynomial multiplication      61
NC (class)      299
NC-algorithm      299
Newton — Henset's (p-adic) lifting      243 247 248
Newton's identities      34 141—144 163 212 330
Newton's iteration      18 22 49 68 147 189 265 283
Newton's polygon process      54
Newton's representation of a polynomial      67
Nonderogatory matrix      120
Nonsingular matrix      87
Normal equations      106
Normalization      291
Norms      90 124
Null space      59 95 105
NULL-SPACE      95 105 337
Numerical conditioning      233—237
Numerical Newton's iteration      24
Numerical stability      233—237
Numerical stabilization by means of equilibration      287
Numerically stable (algorithm)      234
Operator      174—200 217
Operator displacement      175
Operator norms      99
Operator of Cauchy (Hilbert) type      178
Operator of Hankel — Toeplitz type      175
Operator of Vandermonde type      180
OPS      7
Orthogonal Factorization      106 107
Orthogonal matrix      88
Orthogonal polynomials      136 137
Orthogonalization      121
Outer product      278
Output sensitive      206 322
Output size      4
Overflow      292
Overhead constant      7
p-adic approximations      243
p-adic lifting      243 245 248
P-complete      300
pade      46 137
Pade approximation      46 138
Parallel cascade computation      306
Parallel RAM      6 296 304 305
Parallel time      7 73
PART-FRACT      30
Partial derivative      92
Partial differential equation      266
Partial fraction decomposition      30
Partial fraction expansion      260
Partial fractions      26
PDE      266
Permutation matrix      66
Pivoting      102 107
Pivoting, complete      102
Pivoting, partial      103
PLU-FACTORS      103
PLUP-FACTORS      102
POL-COMP      32 308
POL-DCOMP      52
POL-DIVIDE      18 20 22 307
POL-EVAL      9 25 67 307
POL-GCD      36
POL-INTERP      11 25 67 307
POL-LCM      39
POL-MODULI      27
POL-MULT      13 23 307
POL-RECIPR      22
POL-ROOT      51
POL-ZEROS      32
Polynomial approximate division with remainder      21
Polynomial composition      32
Polynomial decomposition      52
Polynomial division with remainder      18 20 22
Polynomial evaluation at a single point      8
Polynomial evaluation on a set of points      9 25
Polynomial gcd      36 42 47 147 150 151 155 161
Polynomial interpolation      11 25 277
Polynomial lcm      36 39 42 47 147 152 310
Polynomial multipucation      12 23 56 249—251 277
Polynomial multivariate      43 61—65
Polynomial reversion modulo $z^K$      55
Polynomial sparse      64 65 257
Polynomial squaring      66
Polynomial, iterated product      12
Polynomial, modular representation      27
Polynomial, pseudo remainder sequence      41 153 238
Polynomial, reciprocal      22
Polynomial, reciprocal modulo m(x)      27 41
Polynomial, remainder sequence      41 238
Polynomial, reverse      34
Polynomial, root of a      51 55
Positive and/or negative wrapped convolution      13
Potential work      7
Power series      21 49 54
Power series composition      32
Power series correlation with polynomials      21
Power series multiplication      21
Power series over finite fields      312 313 372 375
Power series, generalized reversion      50
Power sums      33 34 69 372 375
PRAM      6 296 304 305
Preconditioned      135
Preconditioned conjugate gradient      187
Prefix computation      306
Primitive root of unity      9 69
Principal root of unity      11
Principal submatrix      86
Processor      6—7
Processor bound      296
Processor, efficient algorithm      299
Pseudo inverse      90
Pseudo regularity      268 269
Pseudo remainder sequence      41 153 238
Pseudo resultants      152
QR factorization with column pivoting      107
QR-FACTORS      107 319 321
QRP-FACTORS      107 319 321
Quadratic convergence      50
RAM (random access machine)      3 4
Randomization      42 47 53 60 71 72
Randomized algorithms      5 42—45 52 60 339—345
RANGE      89
Rank      88 108
Rank deficient matrix      88
RAT-INTERP      45
Rational algorithms      5 8 70
Rational arithmetic      241 242 247 289
Rational factorization      99 100 212
Rational functions      70
Rational interpolation      36 45
Rational interpolation table      46
Rational parallel triangulation      329
Rational restarting      302 303 365
Rational roundoff      247
Reciprocal of a polynomial      22 27
RECUR-SPAN      48 140 310
Recursive algorithms      9
Reducibility of problems      74—77 93 98 223—227
Refinement by integer rounding-off      252
Regularization      205—207
Regularization via randomization      60 201
Relative error      292
Repeated squaring      23
Representation error      292
Residual correction      262
Residue      19
Resultant matrix      149
Resultant polynomial      149
Reverse polynomial      34
Reversion matrix      127
Reversion of a polynomial modulo $z^K$      55
Rings      55 58 61 69
Rings, finite      17
Rings, mod N      55
Rokhlin's algorithms      257—262
Rounded value      291
Roundoff error      293
Roundoff integer      252
Roundoff rational      247
Sande — Tukey      123
Scaling procedure      207
Scaling the variable      16
Schoenhage — Strassen algorithm      17 78
Schur complement      99 100 168 169 212
SER-COMP      33 308
SER-MULT      21
SER-REVERSE      50 308
SEV-POL-CCD      42 151
SEV-POL-LCM      42 152
SEV-POL-MULT      112 307
Sherman — Morrison — Woodbury formula      89
Shift of the variable      15
Sieveking — Kung algorithm      22 24
Similarity transformation      116
Sine transform      66 215
Singular linear system      95
Singular matrix      87
Singular value decomposition (SVD)      89 124
Singular values      89
SINGULAR?      96
Size of the circuit      72
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте