Авторизация
Поиск по указателям
Bousfield A., Kan D. — Homotopy limits, completions and localizations
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Homotopy limits, completions and localizations
Авторы: Bousfield A., Kan D.
Аннотация: The main purpose of part I of these notes is to develop for a ring R a functional notion of R-completion of a space X. For R=Zp and X subject to usual finiteness condition, the R-completion coincides up to homotopy, with the p-profinite completion of Quillen and Sullivan; for R a subring of the rationals, the R-completion coincides up to homotopy, with the localizations of Quillen, Sullivan and others. In part II of these notes, the authors have assembled some results on towers of fibrations, cosimplicial spaces and homotopy limits which were needed in the discussions of part I, but which are of some interest in themselves.
Язык:
Рубрика: Математика /Алгебра /Алгебраическая геометрия /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1972
Количество страниц: 348
Добавлена в каталог: 12.03.2005
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Acyclic functor VII
Acyclic functor R VII
Artin — Mazur completion III
Artin — Mazur completion, augment I X
Base point VIII
Closed (simplicial) model category VII VIII VIII x XI
Codegeneracy 1 X XII
Coface 1 X
Cofibrant VIII X
Cofibration VII VIII X XI
Cofinality theorem XI
Cohomology spectral sequence XII XII
Cohomotopy X
Complete convergence VI IX
Complete r 1 VII
Complete, Ext-p VI 3
Completion, Artin — Mazur III
Completion, Ext VI VI VI
Completion, Hom VI VI VI
Completion, Malcev IV V
Completion, p VI
Completion, p-profinite IV VI
Completion, R 1 IV IV XI
Connectivity lemmas I IV
Convergence complete VI IX
Convergence, Curtis IV V VI
Convergence, Mittag — Leffler V VI VII IX
Core I I
Core lemma I I
Cosimplicial diagram XI
Cosimplicial identities X
Cosimplicial map I X
Cosimplicial object X
Cosimplicial replacement XI
Cosimplicial resolution 1 XI
Cosimplicial space 1 X
Cosimplicial standard simplex 1 X
Curtis convergence IV V VI
Degeneracy VIII
Degenerate VIII
Degenerate, cosimplicial XI
Degenerate, non VIII 2
Degenerate, simplicial XII
Diagonal XII
Diagram III XI 2
Direct limit XII XII
Direct limit, homotopy XII
Disjoint union lemma I
Ext, completion VI 2
Ext, p-complete VI
Face VIII
Fibrant VIII X
Fibration VII VIII X XI 8
Fibration, nilpotent II
Fibration, nilpotent, lemma II
Fibration, principal II
Fibration, principal, lemma II III
Fibre VIII
Fibre space V
Fibre type IV V
Fibre, mod-R, lemma II III
Fibre, square lemma II
Fibre, wise R-completion I II IV VII
Finite product lemma I
Fracture lemmas V V VI
Function space V VI VIII X XI
Group-like X
H-space I V
Homology, reduced I
Homology, spectral sequence XII
Homotopy category III VIII VIII XI XII
Homotopy, (pointed) set VIII
Homotopy, class of maps VIII
Homotopy, direct limit XII
Homotopy, equivalence III
Homotopy, group III
Homotopy, inverse limit XI XI XI
Homotopy, sequence IX
Homotopy, spectral sequence i V VI VII IX X
Homotopy, weak pro, equivalence III
Homotopy, — relation VIII
Horn completion VI
Hurewicz homomorphism I
Inverse limit IX IX XI XI XI
Inverse limit, homotopy XI XI XI
Large XI
Left filtering III XI
Left lifting property VIII
Left, cofinal III XI
Left, small XI
localization VIII XI
Localization, R V
Lower (p)-central series IV IV VI
Malcev completion IV V
Matching space X
Maximal augmentation X
Mittag — Leffler IX
Mittag — Leffler convergence V VI VII IX
Mixing, Zabrodsky V
mod-R fibre lemma II III XI
Neighborhood group V VI
Nilpotent action II III
Nilpotent fibration II
Nilpotent fibration lemma II
Nilpotent group II
Nilpotent space II
Nilpotent, R III
p-adic integers VI IX
p-completion VI 6
p-profinite completion IV VI
Perfect VII
Perfect, R VII VII
Pointed ... VIII
Principal fibration II
Principal fibration, lemma II III
Pro isomorphism III III
Pro object III
Pro trivial III
Pro, weak homotopy equivalence III
Product, finite lemma I
R-acyclic VII
R-acyclic functor VII
R-bad I IV VII
r-complete I VII
R-complete, semi VII 2
R-complete, tower lemma III
R-completion I IV IV XI
R-completion, fibre-wise I II IV
R-completion, partial VII
R-completion, semi VII 2
R-good I VII VII VII VII
R-homotopy theory VII
R-localization V
R-nilpotent group III IV
R-nilpotent space III
R-nilpotent, tower lemma III IV
R-perfect VII VII
R-tower II1 IV
Realization functor VIII
Reduced homology I
Reduced space IV
Right filtering XII
Right lifting property X
simplex VIII
Simplex, cosimplicial standard I X
Simplex, standard VIII
Simplicial diagram XII
Simplicial identities VIII
Simplicial map VIII
Simplicial object III
Simplicial replacement XII
Simplicial set VIII
Singular functor VIII
Skeleton VIII
Small III XI
Small, left XI
Solid ring I I I
Space (= simplicial set) I
Standard, cosimplicial simplex I X
Standard, map VIII
Standard, simplex VIII
Total space i X
Tower comparison lemma III
Tower lemmas III IV
Tower of fibrations IX
Tower of groups III IX -
Tower, R III IV
Triple I XI
Triple lemma I
Unaugmentable X
Underlying space XI
Union, disjoint lemma I
Universal properties VII XI XII
Vertex VIII
Weak equivalence VII VIII x XI
Weak pro-homotopy equivalence III
Z-nilpotent (= nilpotent) III
Zabrodsky mixing V
Реклама