Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Gross J.L., Tucker T.W. — Topological Graph Theory (Wiley Series in Discrete Mathematics and Optimization)
Gross J.L., Tucker T.W. — Topological Graph Theory (Wiley Series in Discrete Mathematics and Optimization)



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Topological Graph Theory (Wiley Series in Discrete Mathematics and Optimization)

Авторы: Gross J.L., Tucker T.W.

Аннотация:

This definitive treatment written by well-known experts emphasizes graph imbedding while providing thorough coverage of the connections between topological graph theory and other areas of mathematics: spaces, finite groups, combinatorial algorithms, graphical enumeration, and block design. Almost every result of studies in this field is covered, including most proofs and methods. Its numerous examples and clear presentation simplify conceptually difficult material, making the text accessible to students as well as researchers. Includes an extensive list of references to current literature.


Язык: en

Рубрика: Математика/

Серия: Сделано в холле

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1987

Количество страниц: 351

Добавлена в каталог: 11.10.2012

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Planarity      42ff
Planarity, algorithms      51
Planarity, Fary's theorem      48
Planarity, Kuratowski’s theorem.      42ff
Planarity, MacLane’s theorem      420
Planarity, Tulle's theorem      48
Planarity, Whitney's Duality theorem.      54
Planarity, Whitney’s Uniqueness theorem.      49
Projective plane      26 102
Proulx's classification of groups of genus one      300
Pseudofree      1 82
Pseudosurface      104
Pseudosurface, two-fold triple systems.      105
Quaternion group      299
Quotient, graph      22
Quotient, natural group action      270
Quotient, space      186
Quotient, surface      186 270
Rank of group      250
Reflection      269
Reflection, dividing circles of      269
Reflection, halves of      269
Regular covering      23 186
Regular covering, graph      13
Relator      306
Relator, reduced      306
Riemann surface      174
Riemann — Hurwitz equation      179 284
Ringel — Youngs theorem      30 215ff
Ringel, Gerhard      30 191
Rotation as permutation      161
Rotation at vertex      112
Rotation, projection of      11
Rotation, pure      11
Rotation, system      113
Rotation, vertex form      114
Schemes      192
Schoenfliess Theorem      100
Schreier (coset) graph      73
Schreier (coset) graph, alternative      73
Schreier color graph      73
Self- adjacent      4
Self-dual imbeddings of Cayley graphs      208
Self-dual imbeddings of complete graphs      208 213
Simplex (geometric k-simplex)      96ff
Simplex, barycenter of      99
Simplex, face of      96
Slide of one edge along another      125
Space group      277
Space group, classification      277
Space group, Euclidean      277
Space group, hyperbolic      279
Space group, spherical      279
Star of vertex      24
surface      24ff 96ff
Surface, classification      119ff
Surface, closed      24 96
Surface, crosscap number of      29
Surface, disk sum      131
Surface, Euler characteristic of      130
Surface, genus of      29
Surface, nonorientable      25
Surface, orientable      25
Suspension (join)      20
symmetric      13
Symmetric, genus      264ff
Symmetric, group on n symbols      13
Symmetric, imbedding      264ff
Symmetric, strong      264ff
Symmetric, weak      264ff
Symmetry group      276
T-potential for      89
T-potential for voltage for      90
Torus      30 276
TREE      8
Triangle group      279ff
Triangle group, Euclidean      279
Triangle group, full (p, q, r)      280
Triangle group, hybrid (m, m, n)      290
Triangle group, hyperbolic      280
Triangle group, ordinary (q, r)      281
Triangle group, presentation of      281
Triangle group, proper quotient of      298
Triangle group, spherical      280
Triangulation of surface      98
Triangulation of topological space      98
Triangulation, orientation for      106
Tubes      157
Twisting an edge      134
Twofold triple system      105
Type of edge      110
Type of walk      110
Valence      3
Valence, average      216
Valence, sequence      7
Voltage assignment      57ff
Voltage assignment, natural      251
Voltage assignment, net on cycle      61
Voltage assignment, net on path      61
Voltage assignment, net ordinary      57ff
Voltage assignment, permutation      8
Voltage assignment, relative      74
Voltage graph, base graph      81
Voltage graph, derived graph      81
Voltage graph, derived imbedding      163
Voltage graph, derived rotation system      163
Voltage graph, dual to current graph      204
Voltage graph, face lifting      163
Voltage graph, fiber      81
Voltage graph, imbedded      162ff
Voltage graph, local group      169
Voltage graph, natural (left) action of voltage group      66
Voltage graph, natural action of voltage group      186
Voltage graph, natural projection      177
Voltage graph, ordinary      57ff
Voltage graph, orientability test      170
Voltage graph, permutation      81
Voltage group      57
Voltage group, local      87
Voltage group, natural action of      66
Walk      8
Walk, boundary      101
Walk, closed      8
Walk, length of      8
Walk, open      8
Wheel graph      23
White — Pisanski imbedding      55ff
Word in group      14 306
Word, problem      14
Wrapped covering      207
Youngs, J. W. T.      30
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте