Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Neeman A. — Triangulated categories
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Triangulated categories
Àâòîð: Neeman A.
Àííîòàöèÿ: The first two chapters of this book offer a modern, self-contained exposition of the elementary theory of triangulated categories and their quotients. The simple, elegant presentation of these known results makes these chapters eminently suitable as a text for graduate students. The remainder of the book is devoted to new research, providing, among other material, some remarkable improvements on Brown's classical representability theorem. In addition, the author introduces a class of triangulated categories" — the "well generated triangulated categories" — and studies their properties. This exercise is particularly worthwhile in that many examples of triangulated categories are well generated, and the book proves several powerful theorems for this broad class. These chapters will interest researchers in the fields of algebra, algebraic geometry, homotopy theory, and mathematical physics.
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /Àëãåáðà /Òåîðèÿ êàòåãîðèé /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 2001
Êîëè÷åñòâî ñòðàíèö: 449
Äîáàâëåíà â êàòàëîã: 12.03.2005
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Abelian categories of product-preserving functors 183—214
Abelian categories of product-preserving functors are locally presentable 221—224 326
Abelian categories of product-preserving functors do not satisfy [AB5], [AB5*] 209—210
Abelian categories of product-preserving functors have enough projectives 212
Abelian categories of product-preserving functors may not have cogenerators 403—405
Abelian categories of product-preserving functors satisfy [AB3*] 186—187 200
Abelian categories of product-preserving functors satisfy [AB3] 196—200
Abelian categories of product-preserving functors satisfy [AB4*] 206
Abelian categories of product-preserving functors satisfy [AB4] 207—209
Abelian categories of product-preserving functors via universal homological functor 384—385
Abelian categories of product-preserving functors, coproducts 191
Abelian categories of product-preserving functors, definitions 185
Abelian categories of product-preserving functors, homological functors 204—205
Abelian categories of product-preserving functors, homological objects 224—229 258—262
Abelian categories of product-preserving functors, homological objects, as filtered colimits of representables 226—229
Abelian categories of product-preserving functors, homological objects, characterisation in terms of vanishing Ext 258—259
Abelian categories of product-preserving functors, homological objects, Embedding arbitrary objects in homological ones 259—262
Abelian categories of product-preserving functors, homological objects, stable under filtered colimits 225
Abelian categories-review of formalism -filtered limits 321
Abelian categories-review of formalism -filtered limits, definition of [AB4.5( )] 354
Abelian categories-review of formalism -filtered limits, definition of [AB5 ] 378
Abelian categories-review of formalism -filtered limits, derived functors of limit 345—361
Abelian categories-review of formalism -filtered limits, derived functors of limit, analogy with sheaves 349—351
Abelian categories-review of formalism -filtered limits, derived functors of limit, cofinal sequences 358
Abelian categories-review of formalism -filtered limits, derived functors of limit, flabby sequences 350
Abelian categories-review of formalism -filtered limits, derived functors of limit, Mittag — Leffler sequences 350—354 359—361
Abelian categories-review of formalism -filtered limits, derived functors of limit, sequences of length 348
Abelian categories-review of formalism -filtered limits, derived functors of limit, via canonical resolution 346—348 370—371
Abelian categories-review of formalism -filtered limits, derived functors of limit, via injectives 356
Abelian categories-review of formalism -filtered limits, injectives in functor categories 355—356
Abelian categories-review of formalism -filtered limits, local object 329
Abelian categories-review of formalism -filtered limits, localizant subcategory 328
Abelian categories-review of formalism -filtered limits, localizant subcategory, basic properties 332—334
Abelian categories-review of formalism -filtered limits, localizant subcategory, characterisations 334—335 338—339
Abelian categories-review of formalism -filtered limits, locally presentable categories 321 324—327
Abelian categories-review of formalism -filtered limits, quotient by Serre subcategory 327—328
Abelian categories-review of formalism -filtered limits, quotient maps and products 343—345
Abelian categories-review of formalism -filtered limits, quotients 327—345
Abelian categories-review of formalism -filtered limits, Serre subcategories 327
Abelian categories-review of formalism -filtered limits, [AB3* ( )] and [AB4* ( )] 346
Abelian categories-review of formalism -filtered limits, [AB3* ( )] in functor categories 355
Abelian categories-review of formalism -filtered limits, [AB4] does not imply [AB4.5] 361—366
Adjoints of a triangulated functor is triangulated 179
Adjoints, A(-) preserves and reflects adjoints 181—182
Adjoints, Bousfield localisation 288 309—318
Adjoints, Brown representability 286—287
Bousfield localisation 288 309—318
Bousfield localisation for homology theory E 417—418
Bousfield localisation is selfdual 315—316
Bousfield localisation, embedding the quotient 316—317
Bousfield localisation, existence 288 318
Bousfield localisation, local object 310
Bousfield localisation, perpendicular subcategories 313
Brown representability 275
Brown representability for -perfectly generated categories 282—284
Brown representability for dual of E-acyclic spectra 419—420
Brown representability for duals of well-generated categories 303—306
Brown representability for E-acyclic spectra 417—418
Brown representability for E-local spectra 417—418
Brown representability for spectra 408
Brown representability for well-generated categories 285—286
Brown representability, adjoints 286
Brown — Comenetz objects 302—303 307
Cardinal of 410—411
Cardinal, regular 103
Cardinal, singular 103
Cofinal sequences 358
Compact generating set 274
Compact objects 130
Compact objects in quotient 138 143—144
Compact objects, filtrations by coproducts 371—378
Compact objects, generators for 140
Compact objects, subcategory of 129
Compact objects, subcategory of, inclusion relations 129
Compact objects, subcategory of, is localising 130
Compactly generated categories 274
Existence of products 288
Filtrations by coproducts of compact objects 371—378
Freyd's universal abelian category 153—182
Freyd's universal abelian category, is a Frobenius category 169
Freyd's universal abelian category, is an abelian subcategory closed under extensions 161
Freyd's universal abelian category, A(-) is a functor, and preserves products 177—179
Freyd's universal abelian category, A(-) is a functor, and preserves products, is a Frobenius category 169
Freyd's universal abelian category, A(-) is a functor, and preserves products, is an abelian subcategory closed under extensions 161
Freyd's universal abelian category, A(-) is a functor, and preserves products, A(-) preserves and reflects adjoints 181—182
Freyd's universal abelian category, A(-) is a functor, and preserves products, category and its equivalence with 162—163
Freyd's universal abelian category, A(-) is a functor, and preserves products, category and its equivalence with 167—169
Freyd's universal abelian category, A(-) is a functor, and preserves products, category and its equivalence with 172—173
Freyd's universal abelian category, A(-) is a functor, and preserves products, coproducts in when satisfies [TR5] 169—171
Freyd's universal abelian category, A(-) is a functor, and preserves products, definition of 154
Freyd's universal abelian category, A(-) is a functor, and preserves products, example of non-well-powered 394
Freyd's universal abelian category, A(-) is a functor, and preserves products, functors in preserve products 154
Freyd's universal abelian category, A(-) is a functor, and preserves products, relation with , Ab 214—220
Freyd's universal abelian category, A(-) is a functor, and preserves products, subobjects and quotient objects 172—177
Freyd's universal abelian category, A(-) is a functor, and preserves products, universal homological functor 163—164
Freyd's universal abelian category, A(-) preserves and reflects adjoints 181—182
Freyd's universal abelian category, category and its equivalence with 162—163
Freyd's universal abelian category, category and its equivalence with 167—169
Freyd's universal abelian category, category and its equivalence with 172—173
Freyd's universal abelian category, coproducts in when satisfies [TR5] 169—171
Freyd's universal abelian category, definition of 154
Freyd's universal abelian category, example of non-well-powered 394
Freyd's universal abelian category, functors in preserve products 154
Freyd's universal abelian category, have enough projectives 153—154
Freyd's universal abelian category, relation with , Ab 214—220
Freyd's universal abelian category, subobjects and quotient objects 172—177
Freyd's universal abelian category, universal homological functor 163—164
Functor , Ab is exact and respects coproducts 215
Functor , Ab is restriction 215—216
Functor , Ab is the quotient by a colocalizant subcategory 216—218 290
Functor , Ab is the quotient by a localizant subcategory in the presence of injectives 289—290
Functor , Ab, existence 214—215
Functor , Ab, respects products 218
Functor categories, abelian categories of product-preserving functors 183—214
Functor categories, abelian categories of product-preserving functors, are locally presentable 221—224 326
Functor categories, abelian categories of product-preserving functors, coproducts 191
Functor categories, abelian categories of product-preserving functors, definitions 185
Functor categories, abelian categories of product-preserving functors, do not satisfy [AB5], [AB5*] 209—210
Functor categories, abelian categories of product-preserving functors, Embedding arbitrary objects in homological ones 259—262
Functor categories, abelian categories of product-preserving functors, have enough projectives 212
Functor categories, abelian categories of product-preserving functors, homological functors 204—205
Functor categories, abelian categories of product-preserving functors, homological objects 224—229 258—262
Functor categories, abelian categories of product-preserving functors, homological objects characterised in terms of vanishing Ext 258—259
Functor categories, abelian categories of product-preserving functors, may not have cogenerators 403—405
Functor categories, abelian categories of product-preserving functors, relation with Freyd's universal abelian category 214—220
Functor categories, abelian categories of product-preserving functors, satisfy [AB3*] 186—187 200
Functor categories, abelian categories of product-preserving functors, satisfy [AB3] 196—200
Functor categories, abelian categories of product-preserving functors, satisfy [AB4*] 206
Functor categories, abelian categories of product-preserving functors, satisfy [AB4] 207—209
Functor categories, abelian categories of product-preserving functors, via universal homological functor 384—385
Functor, kernel of 74 99
Functor, representability 275
Functor, representability, for -perfectly generated categories 282—284
Functor, representability, for duals of well-generated categories 303—306
Functor, representability, for well-generated categories 285—286
Functor, triangulated 73
Generating set 205 273—274
Generating set a category without 438—441
Generating set in the dual of well-generated categories 302—303
Generating set, compact 274
Generating set, compactly generated categories 274
Generating set, generate category 285
Generating set, perfect 273—274
Generating set, well generated categories 274
Gluing data 318—319
Good morhism of triangles 52
Good object in a subcategory 113
Grothendieck's duality theorem 306
Homological functor as object in , Ab 224—229 258—262
Homological functor as object in , Ab, as filtered colimits of representables 226—229
Homological functor as object in , Ab, characterisation in terms of vanishing Ext 258—259
Homological functor as object in , Ab, Embedding arbitrary objects in homological ones 259—262
Homological functor as object in , Ab, stable under filtered colimits 225
Homological functor into abelian functor categories 204—205
Homological functor, definition 32
Homological functor, examples 32
Homological functor, universal 163—166
Homological functor, universal into [AB5*] 384—385
Homotopy cartesian square 52
Homotopy colimits of subsequences 68—70
Homotopy colimits, definition 63
Homotopy colimits, elementary properties 64—65
Homotopy pullback 54—55 183—184
Homotopy pushout 53—54
Idempotent splitting 65
Kernel of functor 74 99
Large categories 99—100
Limits -filtered 321
Local object in abelian category 329
Local object in triangulated category 310
Localisation, Bousfield 288 309—318
Localisation, Bousfield, embedding the quotient 316—317
Localisation, Bousfield, existence 288 318
Localisation, Bousfield, is selfdual 315—316
Localisation, Bousfield, local object 310
Localisation, Bousfield, perpendicular subcategories 313
Localisation, Thomason 143—144
Localisation, Verdier 74—99 309
Localisation, Verdier, existence theorem 74—75
Localisation, Verdier, size of Hom-sets 99—100 137 318
Localising subcategory 106—107
Localising subcategory of small objects 126
Locally presentable categories 221—224 321 324—327
Mapping cone, definition 45
Mapping cone, [TR4] 51
Modules , definition 387—388
Modules , force large images 391
Modules , respect homomorphisms 390—391
Modules , stabilise eventually 390
Octahedral axiom 58 60
Perfect classes, definition 110—111
Perfect classes, maximal 120—121
Perfect classes, new out of old 111 116 119
Perfect classes, which are triangulated subcategories 115
Perfect generating set 273—274
Perfectly generated category 274
Perfectly generated category, is not 432—437
Phantom maps 219—220
Phantom maps and injectives in , Ab 299—300
Phantom maps and right adjoint to 301
Phantom maps annihilated by homological functors into [AB5*] categories 383—384
Phantom maps as the kernel of , Ab 218—219
Phantom maps from coproducts of compacts vanish 369—370
Phantom maps in 438—440
Phantom maps, definition 219
Phantom maps, existence for every 219—220
Pretriangle, definition 33
Pretriangle, examples 34
Pretriangle, new out of old 34 49
Pretriangulated category 29 70
Pretriangulated category, definition 29
Products of triangles are triangles 37
Products, existence of 288
Quotient categories 74—99 309
Quotient categories, commutative squares 85—86
Quotient categories, compact objects 143—144
Quotient categories, embedding via Bousfield localisation 316—317
Quotient categories, equality of morphisms 84—85
Quotient categories, existence 74—75 84
Quotient categories, isomorphisms 90 92
Quotient categories, preservation of products 107 110
Quotient categories, size of Hom-sets 99—100 137 318
Quotient categories, zero objects 91
Regular cardinal 103
Representability of functors 275
Representability of functors for -perfectly generated categories 282—284
Representability of functors for duals of well-generated categories 303—306
Representability of functors for well-generated categories 285—286
Serre subcategories 327
Singular cardinal 103
Six functors 318—319
Small categories 99—100 137
Small hom-sets 99—100 137 318
Small object, definition 123
Small object, subcategory of 124
Small object, subcategory of, is localising 126
Small object, subcategory of, is triangulated 124
Spectra, , Ab does not have a cogenerator 425
Spectra, Bousfield localisation for homology 417—418
Spectra, Brown representability 408
Spectra, cardinal of 410—411
Spectra, E-acyclics 411—412
Spectra, E-acyclics, are well-generated 417—418
Spectra, E-acyclics, Brown representability 417—418
Spectra, E-acyclics, Brown representability for dual 419—420
Spectra, E-local 419
Spectra, E-local, are well-generated 417—418
Spectra, E-local, Brown representability 417—418
Spectra, elementary properties 407—408
Spectra, functor to D(R) 420
Spectra, functor to D(R), descends to , Ab 422—425
Spectra, functor to D(R), respects -compacts 420—421
Splitting, idempotent 65
Splitting, triangle with 0 42—45
Subcategory of compact objects 129 130
Subcategory of compact objects, inclusion relations 129
Subcategory of compact objects, is localising 130
Subcategory of small objects 124
Subcategory of small objects is localising 126
Subcategory of small objects is triangulated 124
Subcategory, generated by a set 103—104 106—107
Subcategory, localising 106—107
Subcategory, thick 74 99
Subcategory, thick closure 75 99 147—149
Subcategory, triangulated 60
Thomason localisation 143—144
Thomason localisation, applied to finding 409
TR0 29
TR1 29
TR2 29
TR3 30
TR4, equivalent formulations 51 60
TR5, dual 63
TR5, statement 63
Triangles, contractible 47 48
Triangles, distinguished 29
Triangles, products of 37
Triangles, summands of 38
Triangulated subcategories, which are perfect classes 115
Universal homological functors 163—166 384—385
Verdier localisation 74—99 309
Verdier localisation, existence theorem 74—75
Verdier localisation, size of Hom-sets 99—100 137 318
Well generated categories 274
Well generated categories are unions of 285—286
Well generated categories, duals satisfy Brown representability 303—306
Well generated categories, neither nor 437—441
Well generated categories, not both T and T op 427—431
Well generated categories, satisfy Brown representability 285—286
Ðåêëàìà