| Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
| Wolf E.L. — Nanophysics and nanotechnology. An introduction to modern concepts in nanoscience | |
| Cardy J. — Scaling and renormalization in statistical physics | |
| Sornette D. — Critical phenomena in natural sciences | |
| Taylor M.E. — Partial Differential Equations. Qualitative studies of linear equations (vol. 2) | 304, 356 |
| Hunter J.K., Nachtergaele B. — Applied Analysis | 327 |
| Ross S.M. — Introduction to probability models | 524 |
| Soong T.T. — Fundamentals of probability and statistics for engineers | 106 |
| Shorack G.R. — Probability for statisticians | 202, 235, 302, 311, 318, 469, 500, 536 |
| Falconer K. — Fractal Geometry. Mathematical Foundations and applications | 33—34, 237—253, 238, 239, 265, 268—270 |
| Schmalzried H. — Chemical Kinetics of Solids | 6, 103ff |
| Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 5.D 45 342.A |
| Zinn-Justin J. — Quantum field theory and critical phenomena | 2067 |
| Berger M. — A Panoramic View of Riemannian Geometry | 426, 711 |
| Bird R.B., Lightfoot E.N., Stewart W.E. — Transport Phenomena | 531 |
| Zinn-Justin J. — Quantum field theory and critical phenomena | 21, 57 |
| Falconer K. — Fractal Geometry: Mathematical Foundations and Applications | 37, 258—267, 298, 299, 311—315 |
| Adler R.J. — An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes | 6, 59, 68, 76 |
| Meyn S.P., Tweedie R.L. — Markov Chains and Stochastic Stability | 525 |
| Fishman G.S. — Monte Carlo: concepts, algorithms, and applications | 346 |
| Heyde C.C. — Quasi-likelihood and its application: a general approach to optimal parameter estimation | 17, 31, 33, 34, 131—133, 136, 196 |
| Ganesh A., O'Connell N., Wischik D. — Big Queues | 63, 124 |
| Blei R. — Analysis in Integer and Fractional Dimensions | see also Wiener process |
| Rettig W. (ed.), Strehmel B., Schrader S. — Applied Fluorescence in Chemistry, Biology and Medicine | 46, 349, 350 |
| Majid S. — Foundations of Quantum Group Theory | 169, 182—186 |
| Föllmer H., Schied A. — Stochastic finance | 251 |
| Stein E.M. — Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscilattory Integrals | 189, 642—643 |
| Nayfeh A.H. — Perturbation Methods | 236 |
| Ward R.S., Wells R.O. — Twistor geometry and field theory | 270 |
| Benson D. — Mathematics and music | 38, 69 |
| Clift R., Grace J.R., Weber M.E. — Bubbles, drops, and particles | 70, 71, 272 |
| Frisch U. — Turbulence. The legacy of A.N. Kolmogorov | 48, 121, 205 |
| Biscamp D. — Magnetohydrodynamic turbulence | 133 |
| Peters E.E. — Fractal Market Analysis: Applying Chaos Theory to Investment and Economics | 18, 183—185 |
| Ehlers J.F. — Mesa and Trading Market Cycles: Forecasting and Trading Strategies from the Creator of MESA | 6 |
| Peters E.E. — Chaos and Order in the Capital Markets | 3 5—16 |
| Athreya K.B., Ney P.E. — Branching Processes | 242- 246 |
| Govindarajulu Z. — Sequential Statistics | 50 |
| Grimmett G. — Percolation | 389 |
| Huang K. — Statistical Mechanics | 50 |
| Winkler G. — Stochastic Integrals | 1.1 |
| Chaudhry M.A., Zubair S.M. — On a Class of Incomplete Gamma Functions with Applications | 195 |
| Curtain R.F., Pritchard A.J. — Functional Analysis in Modern Applied Mathematics | 85 |
| Bellman R. — Methods of nonlinear analysis (Vol. 1) | 70 |
| Skorokhod A.V., Prokhorov Y.V. (Ed) — Basic Principles and Applications of Probability Theory | 8, 84 |
| Thorisson H. — Coupling, Stationarity, and Regeneration | 97, 128, 242, 336 |
| Hamilton J.D. — Time Series Analysis | 477—479 |
| Honerkamp J. — Statistical Physics | 189 |
| Kay S.M. — Intuitive Probability and Random Processes using MATLAB | see “Wiener random process” |
| Lim Ch., Nebus J. — Vorticity, Statistical Mechanics, and Monte Carlo Simulation | 1 |
| Resnick S.I. — Heavy-Tail Phenomena: Probabilistic and Statistical Modeling | 292, 300 |
| Duffie D., Singleton K.J. — Credit Risk. Pricing, Measurement and Management | 53—55, 66, 72, 167—168, 172, 197, 255—256, 323 |
| Carmona R. — Practical Time-Frequency Analysis | 222, 258 |
| Balakrishnan N., Nevzorov V.B. — A Primer on Statistical Distributions | 152 |
| Borwein P., Choi S., Rooney B. — The Riemann Hypothesis | 127 |
| Dudley R.M., Fulton W. (Ed) — Real Analysis and Probability | 444—476 |
| Jacobsen M. — Point Process Theory and Applications: Marked Point and Piecewise Deterministic Processes | 29 |
| Fleming W.H., Soner H.M. — Controlled Markov Processes and Viscosity Solutions | 128 |
| Strauss W.A. — Partial Differential Equations: An Introduction | 15, 49, 147—148 |
| Wise G.L., Hall E.B. — Counterexamples in Probability and Real Analysis | 24, 156—158 |
| Nickerson R. — Cognition and Chance The Psychology of Probabilistic Reasoning | 15 |
| Falconer K.J. — Techniques in Fractal Geometry | 237—245 |
| Hajek J., Sidak Z., Sen P.K. — Theory of rank tests | 232, 235, 236, 238, 239, 296, 297 |
| Hunt P.J., Kennedy J. — Financial Derivatives in Theory and Practice | 19—30, 44, 67, 77, 84—88, 99,159—160, 305—308, see also random walks |
| Powers D.L. — Boundary Value Problems: And Partial Differential Equations | 204 |
| Chung K.L., Walsh J.B. — Markov Processes, Brownian Motion, and Time Symmetry | 11, 118, 125, 128, 144ff, 228, 247, 410 |
| Gershenfeld N. — The Nature of Mathematical Modelling-Neil Gershenfeld | 53 |
| Gut A. — Stopped Random Walks: Limit Theorems and Applications | see “Wiener, process” |
| Szekely G.J. — Paradoxes in probability theory and mathematical statistics | in/3 |
| Smith P. — Explaining chaos | 37, 39 |
| Karlin S., Taylor H.E. — A Second Course in Stochastic Processes | 169—170, 211, 323, 377, 379, 385, 386, 388, 389, 394 |
| Rockmore D. — Stalking the Riemann Hypothesis: The Quest to Find the Hidden Law of Prime Numbers | 102 |
| Weickert J. — Visualization and Processing of Tensor Fields: Proceedings of the Dagstuhl Workshop | 123 |
| Marcus M., Rosen J. — Markov Processes, Gaussian Processes and Local Times | 11, 13, 276 |
| Shiryaev A., Peskir G. — Optimal Stopping and Free-Boundary Problems | 93, 94 |
| Suykens J.A.K., Horvath G., Basu S. — Advances in learning theory: methods, models and applications | 292 |
| Sandor J., Mitrinovic D.S., Crstici B. — Handbook of Number Theory II | 344 |
| Weiss U. — Quantum Dissapative Systems | 143 |
| Balescu R. — Equilibrium and nonequilibrium statistical mechanics | 372, 644 |
| Holden A.V. — Chaos | 8, 292 |
| Baez J.C., Segal I.E., Zhou Z. — Introduction to algebraic and constructive quantum field theory | 23, 116, 206 |
| Kahane J.P., Bollobas B. (Ed) — Some Random Series of Functions | 125, 233, 288 |
| Nasar S. — A Beautiful Mind | 55 |
| Chorin A.J. — Vorticity and turbulence | 44—45, 88—89 |
| Walecka J.D. — Fundamentals of statistical mechanics | 42 |
| Chaikin P.M., Lubensky T.C. — Principles of condensed matter physics | 375, 663 |
| Born M. — Natural philosophy of cause and chance (The Waynflete lectures) | 62—65, 73, 99, 170, 196 |
| Shreve S.E. — Stochastic Calculus for Finance 2 | 94 |
| Arnold V.I., Khesin B.A. — Topological methods in hydrodynamics | 134 |
| Feynman R.P., Leighton R.B., Sands M. — The Feynman lectures on physics (vol.1) | 1—8, 6—5, 41—1 ff |
| Garbaczewski P. (eds.), Olkiewicz R. (eds.) — Dynamics of dissipation | 340—342 |
| Isihara A. — Statistical physics | 159, 182, 201 |
| Rammer J. — Quantum transport theory | 222, 336 |
| Cover T.M., Gopinath B. — Open problems in communication and computation | 155, 204—207 |
| Knuth D.E. — The art of computer programming (vol. 2 Seminumerical Algorithms) | 559 |
| Intriligator M.D., Arrow K.J. — Handbook of Mathematical Economics (vol. 4) | 1647, 1669, 1671 |
| Toda M., Kubo R., Saito N. — Statistical Physics I: Equilibrium Statistical Mechanics, Vol. 1 | 6, 10 |
| Baxter M., Rennie A. — Financial calculus | 44—46, 48, 49, 54 |
| Hull J.C. — Options, futures and other derivatives | 218 |
| Boas R.P. — A Primer of Real Functions | 72 |
| Scott A. — Neuroscience: a mathematical primer | 58, 59 |
| Lin C.C., Segel L.A. — Mathematics Applied to Deterministic Problems in the Natural Sciences | 73—74, 78—79 |
| Lerner K.L., Lerner B.W. — The gale encyclopedia of science (Vol. 6) | 1:625, 2:937 |
| Domb C., Lebowitz J.L. — Phase Transitions and Critical Phenomena (Vol. 19) | 9, 23, 65, 411, 439 |
| Slade G. — The Lace Expansion and Its Applications | 5, 58 |
| Ito K. — Encyclopedic Dictionary of Mathematics | 5.D, 45, 342.A |
| Simon B. — Functional Integration and Quantum Physics | 33 |
| Polkinghorne J.C. — The quantum world | 55, 92 |
| Whittaker E.T., Robinson G. — The calculus of observations | 208 |
| Shiryaev A.N. — Probability | 306 |
| Kannan D. (ed.), Lakshmikantham V. (ed.) — Handbook of stochastic analysis and applications | 390 |
| Fukushima M. — Dirichlet forms and markov process | 95 |
| Mahmoud H.M. — Sorting: a distribution theory | 109, 106—108 |
| Leff H.S., Rex A.F. — Maxwell's Demon 2: Entropy, Classical and Quantum Information, Computing | 12, 68, 122, 149, 164—165, 208, 283, 289—290, 299, 328, 374, 384, 417, 427, 445, 449, 454 |
| Dacorogna M.M., Gencay R., Mueller U.A. — An Introduction to High-Frequency Finance | 49 |
| Schroeder M.R. — Schroeder, Self Similarity: Chaos, Fractals, Power Laws | 86, 128, 133, 140, 142, 144 |
| Rubinstein M., Colby R.H. — Polymer Physics | 309 |
| Zauderer E. — Partial Differential Equations of Applied Mathematics | 3, 15, 22, 24, 25 |
| Dupacova J., Hurt J., Stepan J. — Stochastic Modeling in Economics and Finance | 231, 238—244 |
| Motchenbacher C.D., Connelly J.A. — Low-noise electronic system design | 8 |
| Luenberger D.G. — Investment science | 306—308 |
| Pippard A.B. — The Elements of Classical Thermodynamics | 7, 83 |
| Fishbane P.M. — Physics For Scientists and Engineers with Modern Physics | 565 |
| Hiemenz P.C. (ed.), Rajagopalan R. (ed.) — Principles of colloid and surface chemistry | 85—90 |
| Elliot P.D.T.A. — Probabilistic Number Theory One | 3 |
| Duffie D. — Security Markets. Stochastic Models | 16, 135 |
| Kythe P.K. — Fundamental Solutions for Differential Operators and Applications | 118 |
| Berry D.A., Fristedt B. — Bandit problems | 167, 168, 170—175, 182, 202, 210, 218 |
| Audretsch J. — Entangled World: The Fascination of Quantum Information and Computation | 222 |
| Prigogine I. — Nonequilibrium statistical mechanics | 66, 67, 73, 75, 78, 80, 82, 84, 85, 94, 95, 97, 108, 209, 210, 216, 236, 289 |
| Aven O.I., Coffman E.G., Kogan Y.A. — Stochastic Analysis of Computer Storage | 80 |
| Holden A.V. — Chaos | 8, 292 |
| Haake F. — Quantum signatures of chaos | 9, 142, 198, 218 |
| Feller W. — Introduction to probability theory and its applications (volume 1) | cf. “Diffusion” |
| Dalvit D.A.R., Frastai J., Lawrie I.D. — Problems on statistical mechanics | 16, 6.12 |
| Kubo R., Toda M., Hashitsume N. — Statistical physics II. Nonequilibrium statistical mechanics | 2, 27, 40, 48, 69, 73 |
| Intriligator M.D., Arrow K.J. — Handbook of Mathematical Economics (vol. 1) | 260—264, 267 |
| Strichartz R.S. — The way of analysis | 403 |
| Kemmer F.N. (ed.) — The NALCO Water Handbook | 17.1 |
| Shanbhag D.N. (ed.), Rao C.R. (ed.) — Stochastic Processes - Modelling and Simulation | 389, 394, 397, 854 |
| Dekker H. — Classical and quantum mechanics of the damped harmonic oscillator | 4, 6, 69 |
| Chan T., Shen J. — Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods | 67, 150, 153 |
| Havin V.P., Nikolski N.K. (eds.) — Linear and Complex Analysis Problem Book 3 (part 2) | 18.1, 18.12 |
| Unertl W.N. — Physical Structure | 513 |
| Bingham N.H., Goldie C.M., Teugels J.L. — Regular variation | 340—341, 358 |
| Feynman R.P., Leighton R.B., Sands M. — The Feynman lectures on physics (vol.2) | I-1-8, I-6-5, I-41-1 ff |
| Povey M.J. — Ultrasonic Techniques for Fluids Characterization | 160 |
| Ayala C., Spellberg B. — Pathophysiology for the Boards and Wards: A Review for USMLE Step 1 | 73 |
| Hannan E. J. — Multiple time series | 15, 24—26, 108 |
| Heer C.V. — Statistical Mechanics: Kinetic, Theory and Stochastic Process | 417—419 |
| Kubo R. — Statistical Mechanics: An Advanced Course with Problems and Solutions | 275, 378, 400, 402, 416 |
| Kannan D. — An introduction to stochastic processes | 160, 161, 227 |
| Landau L.D., Lifschitz E.M. — Fluid Mechanics. Vol. 6 | 235 |
| Dutra S.M. — Cavity quantum electrodynamics | 220 |
| Rockmore D. — Stalking the Riemann Hypothesis | 102 |
| Aslrom K.J. — Introduction to Stochastic Control Theory | 19, 78 |
| Walker J. — The flying circus of physics: with answers | 1.67 |
| Cowan B. — Topics In Statistical Mechanics | 254, 260 |
| Balian R. — From Microphysics to Macrophysics: Methods and Applications of Statistical Physics (vol. 1) | 9, 224, 227 |
| Poole Jr.C.P., Owens F.J. — Introduction to Nanotechnology | 277 |
| Callaghan P. — Principles of Nuclear Magnetic Resonance Microscopy | 157—162, 331—334 |
| Betchov R. — Stability of Parallel Flows | 228 |
| Tarantola A. — Inverse problem theory and methods for model parameter estimation | 44, 52 |
| Mix D.F., Olejniczak K.J. — Elements of Wavelets for Engineers and Scientists | 17 |
| Blumenthal R.M. — Excursions of markov processes | 9 |
| Feller W. — Introduction to probability theory and its applications (Volume II) | 99, 181, 322—349, 475—479 |
| Pope S.B. — Turbulent Flows | 483, 539 |
| Gautreau R., Savin W. — Schaum's Outline of Modern Physics | 264 |
| Huang K. — Introduction to Statistical Physics | 264 |
| Wolf E.L. — Nanophysics and nanotechnology: an introduction to modern concepts in nanoscience | 23, 161 |
| Billingsley P. — Probability and Measure | 522, 529, 553, 559, 560 |
| Grimmett G., Stirzaker D. — Probability and Random Processes | 370, 514 |
| Gardiner C.W.W., Haken H. — Handbook of Stochastic Methods: For Physics, Chemistry and the Natural Sciences | 2 |
| Driscoll T.A., Trefethen L.N. — Schwarz-Christoffel Mapping | 97-99 |
| Sernelius B.E. — Surface Modes in Physics | 57, 320, 321, 323, 328, 360 |
| Mason G.W., Griffen D.T., Merrill J. — Physical Science Concepts | 75, 95-96, 102-103, 111, 211, 365, 370 |
| Bratteli O., Robinson D.W. — Operator Algebras and Quantum Statistical Mechanics (vol. 2) | 366, 376, 448 |
| Pal S.K., Pal A. (eds.) — Pattern Recognition: From Classical to Modern Approaches | 101 |
| Junker G. — Supersymmetric Methods in Quantum and Statistical Physics | 93 |
| Gamow G. — The Birth and Death of the Sun: Stellar Evolution and Subatomic Energy | 24, 25 |
| Chan Man Fong C.F., De Kee D., Kaloni P.N. — Advanced Mathematics for Engineering and Sciences | 853 |
| Petrou M., Sevilla P.G. — Image Processing: Dealing with Texture | 117, 119, 121, 123—126 |
| Pinsky M.A. — Introduction to Fourier Analysis and Wavelets | 299 |
| Meyer Y. — Wavelets and Operators | 6, 128 |
| Schulman L.S. — Techniques and applications of path integration | 28, 53—64, 342 |
| De Finetti B. — Theory of probability (Vol. 2) | 51 |
| Mehta M.L. — Random Matrices | 5, 184, 650 |
| Shafer G., Vovk V. — Probability and finance | 205 |
| ter Haar D. — Elements of Statistical Mechanics | 302 |
| Araki H. (ed.), Ezawa H. (ed.) — Topics in the Theory of Schrödinger Operators | 205 |
| Alter O., Yamamoto Y. — Quantum Measurement of a Single System | 24, 37-39, 44, 47 |
| Ambjorn J., Durhuus B., Jonsson T. — Quantum Geometry: A Statistical Field Theory Approach | 11, 45 |
| Ash R.B., Doléans-Dade C.A. — Probability and Measure Theory | 401 |
| Rebonato R. — Interest-rate option models : understanding, analysing and using models for exotic interest-rate options | 152, 153, 190, 406, 471-4 |
| Hollander Fr. — Large deviations | X.1 |
| de Groot S.R., Mazur P. — Non-equilibrium thermodynamics | 187—194, 232—233 |
| Elliot P.D.T.A. — Probabilistic Number Theory Two: Central Limit Theorems | 3, 288 |
| West B.J., Bologna M., Grigolini P. — Physics of Fractal Operators | 5, 15, 39, 213—215, 260 |
| Bernard P.S., Wallace J.M. — Turbulent Flow: Analysis, Measurement and Prediction | 2, 49, 78, 431, 435, 448, 482 |
| Scully M.O., Zubairy M.S. — Quantum optics | 344 |
| Risken H. — The Fokker-Planck equation: methods of solution and applications | 1ff |
| Prigogine I. — From being to becoming: time and complexity in the physical sciences. | 11, 26, 57, 135, 148, 195 |
| Emanuel Parzen — Stochastic processes (Classics in Applied Mathematics) | see also “Wiener process”, 2, 7, 27—29, 80, 95, 96, 98, 129 |
| Cotterill R.M.J. — Biophysics: An Introduction | 70 |
| Basdevant J.-L., Dalibard J. — Quantum Mechanics | 496 |
| Prigogine I. — Proceedings of the International Symposium on Transport. Processes in Statistical Mechanics, held in Brussels,. August 27-31, 1956 | 47, 56, 136, 148, 149, 155, 164, 166, 208, 213, 216, 224, 275, 376, 395 |
| Grosche C., Steiner F. — Handbook of Feynman path integrals | 18, 33 |
| Auletta G. — Foundations and Interpretation of Quantum Mechanics | 337, 406 |
| Adler S.L. — Quantum theory as emergent phenomenon | 13, 17, 154, 156—192 (see also Stochastic Schrodinger equation) |
| Roe B.P. — Probability and Statistics in Experimental Physics | 16 |
| Pathria P.K. — Statistical Mechanics | 452, 459—469, 470—474, 490—492 |
| Balakrishnan N. (ed.), Rao C.R. (ed.) — Order Statistics - Theory and Methods | 507 |
| Accardi L., Lu Y.G., Volovich I. — Quantum Theory and Its Stochastic Limit | 77 |
| Petersen K.E. — Ergodic theory | 280 |
| van Dijk M.A., Wakker A. — Concepts of Polymer Thermodynamics | 16 |
| Kao E. — Introduction to Stochastic Processes | 374—375 |
| Drmota M., Tichy R.F. — Sequences, Discrepancies and Applications | 300, 312 |
| Whittaker E. — A history of the theories of aether and electricity (Vol 2. The modern theories) | 9 |
| Durrett R. — Probability: Theory and Examples | 375 |
| Doukhan P. — Mixing. Properties and examples | 112 |
| Hughes B.D. — Random walks and random enviroments (Vol. 1. Random walks) | 1, 8, 14, 48, 189 |
| Tauxe L. — Paleomagnetic principles and practice | 60 |
| Rao M.M., Swift R.J. — Probability Theory With Applications | 91, 343, 344, 459 |
| Holden H., Oksendal B. — STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS | 14—15, 56, 197—198 |
| van Dijk N. — Handbook of Statistics 16: Order Statistics: Theory & Methods | 507 |
| De Finetti B. — Theory of Probability. A critical introductory treatment(vol. 2) | 51 |
| Socha L. — Linearization Methods for Stochastic Dynamic Systems | 27 |
| Bertotti G. — Hysteresis in Magnetism: For Physicists, Materials Scientists, and Engineers | 273, 315, 525—526, 527—528 |
| Astfalk G. — Applications on Advanced Architecture Computers | 28, 29 |
| Rosenblatt M. — Random processes | 94, 122, 137ff. |
| Truesdell C.A., Wang C.C. — Rational Thermodynamics | 311 |
| Adomian G. — Stochastic Systems | 58, 64, 98, 307 |
| Suykens J.A.K., Horvath G. — Advanced learning theory: methods, moduls and applications | 292 |
| Messiah A. — Quantum mechanics. Volume 1 | 7, 56 |
| Pattabhi V., Gautham N. — Biophysics | 48 |
| Goldenfeld N. — Lectures on Phase Transitions and the Renormalization Group | 46, 211 |
| Prigogine I. — Monographs in Statistical Physics And Thermodynamics. Volume 1. Non-equilibrium statistical mechanics | 66, 67, 73, 75, 78, 80, 82, 84, 85, 94, 95, 97, 108, 209, 210, 216, 236, 289 |
| Klauder J.R., Sudarshan E.C.G. — Fundamentals of Quantum Optics | 57 |
| Adler R.J. — Geometry of random fields | 184, 254 |
| Knight J. — Science of everyday things (volume 4). Real-life earth science | 1:69, 1:332—333, 2:195—196, 2:206 |
| Antoine J.-P. (ed.), Tirapegui E. (ed.) — Functional Integration: Theory and Applications | 67, 75, 181 |
| N. Vilenkin, George Yankovsky (translator) — Combinatorial mathematics for recreation | 81 |
| Mandel L., Wolf E. — Optical Coherence and Quantum Optics | 84, 876 |
| Shu F.H. — The Physical Universe: An Introduction to Astronomy | 344 |
| Dembo A., Zeitouni O. — Large deviations techniques and applications | 43, 151, 160—164, 170, 183, 186, 187—217, 224, 321 |
| Gallavotti G. — Foundations of fluid mechanics | 134, 142, 399, 411, 413, 423 |
| Dynkin E.B., Yushkevich A.A. — Markov processes; theorems and problems | 41, 52, 65 |
| Harnwell G.P., Livingood J.J. — Experimental Atomic Physics | 87, 92 |
| John Strikwerda — Finite difference schemes and partial differential equations | 141 |
| Papadopoulos G.J. (ed.), Devreese J.T. (ed.) — Path integrals and their applications in quantum, statistical, and solid state physics | 26, 49, 85—86, 109, 288, 462—463, 466 |
| Cox R.T. — Statistical mechanics of irreversible change | 38 ff. |
| Rogers C.A. — Hausdorff Measures | 133 |
| Renliang Xu — Particle Characterization : Light Scattering Methods | 11, 83, 239, 266, 300, 323, 332, 337 |
| Itzykson C., Drouffe J-M. — Statistical field theory. Vol. 1 | 1, 649, 778, 801 |
| Roepstorf G. — Path integral approach to quantum physics | 7, 21 |
| Amoroso R.L. (ed.), Hunter G. (ed.), Vigier J.-P. (ed.) — Gravitation and Cosmology: From the Hubble Radius to the Planck Scale | 96—97, 100 |
| Reif F. — Fundamentals of statistical and thermal physics | 251, 560 |
| McQuarrie D.A. — Statistical Mechanics | 124, 452, 514 |
| Adams D.R., Hedberg L.I. — Function spaces and potential theory | 48 |
| Chaikin P., Lubensky T. — Principles of condensed matter physics | 375, 663 |
| Carroll R.W. — Mathematical physics | 291 |
| Bransden B., Joachain C. — Physics of Atoms and Molecules | 2 |
| Rößler A. — Numerical Methods for Stochastic Differential Equations | 8 |
| Crowell B. — Electricity and Magnetism | 27 |
| Rao M.M., Ren Z.D. — Applications of Orlicz spaces | 273 |
| Lang R. — Spectral Theory of Random Schrodinger Operators: A Genetic Introduction | 22ff, 32ff, 43ff, 64ff |
| Zallen R. — The Physics of Amorphous Solids | 115, 116, 119, 131, 132, 165 |
| Richards P.I. — Manual of Mathematical Physics | 225, 431 |
| Podgorsak E. — Radiation Physics for Medical Physicists | 375 |
| Saito Y. — Statistical physics of crystal growth | 39 |
| Ercolani N.M., Gabitov I.R., Levermore C.D. — Singular limits of dispersive waves | 233 |
| Ambjorn J., Durhuus B., Jonsson T. — Quantum Geometry. A Statistical Field Theory Approach | 11, 45 |
| Hugh D. Young, Roger A. Freedman — University physics with modern physics | 640 |
| Coffey W.T., Kalmykov Yu.P., Waldron J.T. — The Langevin equation | 3, 236 |
| Arratia R., Barbour A.D., Tavare S. — Logarithmic Combinatorial Structures: A Probabilistic Approach | 20, 216 |
| Hobbie R., Roth B. — Intermediate Physics for Medicine and Biology, | 61, 85, 312 |
| Liu P.D., Qian M., Dold A. — Smooth Ergodic Theory of Random Dynamical Systems | 116 |
| Albeverio S.A., Hoegh-Krohn R.J. — Mathematical theory of Feynman path integrals | 7, 9 |
| Davies P. — The Cosmic Blueprint | 60—61 |
| Biskamp D. — Magnetohydrodynamic Turbulence | 133 |
| Chung K.L., Walsh J.B — Markov Processes, Brownian Motion, and Time Symmetry | 11, 118, 125, 128, 144ff, 228, 247, 410 |
| Thirring W., Harrell E.M. — Quantum Mathematical Physics. Atoms, Molecules and Large many-body Systems | 430 |
| Moore F. — Elements of Computer Music | 215 |
| Veselic I. — Integrated density of states and Wegner estimates for random Schrodinger operators | 24 |
| Zeidler E. — Applied Functional Analysis: Applications to Mathematical Physics | 381 |
| Kuo H.-H. — Gaussian Measures in Banach Spaces | 108, 214 |
| Kruegel E. — The Physics of Interstellar Dust | 39—40, 72, 292ff, 351ff, 362, 367, 372 |
| Bluman G.W. — Similarity Methods for Differential Equations | 258, 271 |
| Sommerfeld A. — Thermodynamics and Statistical Mechanics | 181 |
| Walls D.F., Milburn G.J. — Quantum Optics | 112 |
| Bernstein P.L. — Capital Ideas: The Improbable Origins Of Modern Wall Street | 22, 103—104, 105, 106 |
| Salmhofer M. — Renormalization: an introduction | 5 |
| Zeidler E. — Oxford User's Guide to Mathematics | 500, 1042, 1194 |
| Lemm J.C. — Bayesian field theory | 40, 147, see also "Wiener process" |
| Pier J.-P. — Mathematical Analysis during the 20th Century | 324 |
| Chandler D. — Introduction to modern statistical mechanics | 264—265 |
| Hamilton J.D. — Time Series Analysis | 477—479 |
| Wornell G. — Signal Processing with Fractals: A Wavelet Based Approach | 31, 36, 38 |
| Kolosov G.E. — Optimal design of control systems: Stochastic and deterministic problems | 33 |
| Kloeden P/, Platen E., Schurz H. — Numerical solution of SDE through computer experiments | 50 |
| Bharucha-Reid A.T. — Elements of the Theory of Markov Processes and Their Applications | 139, 140 |
| Blumenthal R.K., Getoor R.M. — Markov processes and potential theory | 18, 51, 71, 73, 83, 84, 88, 94, 146, 227 |
| Revuz D., Yor M. — Continuous martingales and Brownian motion | 19 |
| Breuer H.-P., Petruccione F. — The Theory of Open Quantum Systems | 30, 460, 607 |
| Kardar M. — Statistical physics of fields | 188 |
| Ericksen J.L. — Introduction to the Thermodynamics of Solids | 7, 150 |
| Glimm J., Jaffe A. — Quantum Physics: A Functional Integral Point of View | 43ff |
| Ripley B.D. — Stochastic Simulation | 107 |
| Vanmarcke Erik — Random Fields : Analysis and Synthesis | 1, 4, 7, 68, 221, 360 |
| Mantegna R.N., Stanley H.E. — An introduction to econophysics: correlations and complexity in finance | 3 |
| Dynkin E. — An Introduction to Branching Measure-Valued Processes | 28 |
| Heinonen J. — Lectures on Analysis on Metric Spaces | 88 |
| ter Haar D. — Elements of Statistical Mechanics | 302 |
| Achdou Y., Pironneau O. — Computational methods for option pricing | 3 |
| Davis P., Hersh R. — The Mathematical Experience | 93 |
| Addison P.S. — Fractals and chaos | 54, 58 |
| Groesen E., Molenaar J. — Continuum Modeling in the Physical Sciences (Monographs on Mathematical Modeling and Computation) | 174 |
| Sturrock P. — Plasma Physics: An Introduction to the Theory of Astrophysical, Geophysical and Laboratory Plasmas | 288 |
| Feynman R., Leighton R., Sands M. — Lectures on Physics 2 | I-1-8, I-6-5, I-41-1 ff |
| Kleinert H. — Gauge fields in condensed matter (part 2) | 135, 140, 160 |
| Maddala G.S. (ed.), Rao C.R. (ed.) — Robust Inference | 289—290, 293 |
| Mackey G. — Unitary Group Representations in Physics, Probability and Number Theory | 152 |
| Falconer K. — Fractal geometry: mathematical foundations and applications | 37, 258—267, 259, 261, 298, 299, 311—315 |
| Blin-Stoyle R.J. — Eureka! Physics of particles, matter and the universe | 35 |
| Reichl L.E. — Modern Course in Statistical Physics | 230, 250—257 |
| Ichimaru S. — Statistical Plasma Physics, Volume I: Basic Principles (Frontiers in Physics, Vol 87) (v. 1) | 294 |
| Badii R., Politi A. — Complexity: Hierarchical structures and scaling in physics | 25, 89 |
| Lin C., Segel L. — Mathematics Applied to Deterministic Problems in the Natural Sciences | 73—74, 78—79 |
| Lin C., Segel L. — Mathematics Applied to Deterministic Problems in the Natural Sciences | 73—74, 78—79 |
| Plischke M., Bergersen B. — Equilibrium statistical physics | 323—325, 345 |
| Landau L., Sykes J. — Fluid Mechanics: Vol 6 (Course of Theoretical Physics) | 235 |
| Lin C., Segel L. — Mathematics applied to deterministic problems in the natural sciences | 73—74, 78—79 |
| Honerkamp J. — Statistical physics: an advanced approach with applications | 189 |
| Plummer J.D., Deal M.D., Griffin P.B. — Silicon VLSI Technology: Fundamentals, Practice, and Modeling | 157, 158 |
| Billingsley P. — Convergence of Probability Measures | 4, 62, 154 |
| Jorgensen P.E.T. — Analysis and Probability: Wavelets, Signals, Fractals | xxvi, xxvii, 56, 57 |
| Sondheimer E., Rogerson A. — Numbers and Infinity: A Historical Account of Mathematical Concepts | 142 |