|
 |
Ðåçóëüòàò ïîèñêà |
Ïîèñê êíèã, ñîäåðæàùèõ: Green's function
Êíèãà | Ñòðàíèöû äëÿ ïîèñêà | Agarwal R.P. — Difference Equations and Inequalities. Theory, Methods and Applications. | 77, 763-774, 788, 789, 874 | Nevanlinna R., Paatero V. — Introduction to Complex Analysis | 324, 341 | Hunter J.K., Nachtergaele B. — Applied Analysis | 70, 245, 253, 254, 316 | Greiner W., Muller B., Rafelski J. — Quantum electrodynamics of strong fields | 415—420 (see also “Feynman propagator”, “Dirac equation”) | Evans L.C. — Partial Differential Equations | 33—41 | McComb W.D. — Physics of Fluid Turbulence | 539 | Ben-Israel A., Greville T. — Generalized inverses: Theory and applications | 311 | Ammari H., Hyeonbae Kang — Reconstruction of Small Inhomogeneities from Boundary Measurements | 33, 75, 122, 192, 193 | Milnor J. — Dynamics in One Complex Variable | 17-1, G-2 | Silverman J.H. — The arithmetic of elliptic curves | 370 | Handscomb D.C. — Methods of numerical approximation | 149 | Hormander L. — Notions of Convexity | 119 | Smirnov V.I. — Higher mathematics. Vol.2 | 590—592 | Nayfeh A.H. — Perturbation Methods | 362, 364, 380 | Ward R.S., Wells R.O. — Twistor geometry and field theory | 353, 421, 446 | Benson D. — Mathematics and music | 398 | Hirth J.P., Lothe J. — Theory of dislocations | 45, 48, 476 | Kecman V. — Learning and soft computing. Support vector machines, neural networks, and fuzzy logic models | 320 | Ahlfors L.V. — Complex analysis | 243, 249—251 | Sadd M.H. — Elasticity: theory, applications, and numerics | 111, 431 | Simon B. — Quantum mechanics for Hamiltonians defined as quadratic forms | 72—77, 118—120 | Frisch U. — Turbulence. The legacy of A.N. Kolmogorov | 213 | Chorin A., Marsden J. — A Mathematical Introduction to Fluid Mechanics | 61, 63, 64, 86 | Leslie D.C. — Developments in the theory of turbulence | 114, 115, 125, 126, 129, 137, 179, 199, 200, 204, 267 | Debnath L. — Nonlinear Partial Differential Equations for Scientists and Engineers | 39—40, 67—78, 91, 453—459 | Wilmott P., Bowison S., DeWynne J. — Option Pricing: Mathematical Models and Computation | 102 | Hand L.N., Finch J.D. — Analytical Mechanics | 96, 102, 399, 120 (prob) | Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume III: Analysis | 329, 410, 434 | Hebey E. — Sobolev Spaces on Riemannian Manifolds | 51 | Tarkhanov N.N. — Cauchy Problem for Solutions of Elliptic Equations | 324 | Ablowitz M.J., Fokas A.S. — Complex Variables: Introduction and Applications | 286, 288 | Chung K.L., Walsh J.B. — Markov Processes, Brownian Motion, and Time Symmetry | 410 | Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 1 | 683—685, 692, 1069 | Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 722 | Chabrowski J. — Dirichlet Problem with L2-Boundary Data for Elliptic Linear Equations | 84 | Feynman R.P., Leighton R.B., Sands M. — The Feynman lectures on physics (vol.1) | 25—4 | Isihara A. — Statistical physics | 211, 286, 361, 405ff | Rammer J. — Quantum transport theory | 88 | Rudin W. — Functional analysis | 378 | Lang S.A. — Undergraduate Analysis | 378 | Rall D. — Computational Solution to Nonlinear Operator Equations | 175, 181 | Griffits D.J. — Introduction to quantum mechanics | 363, 366, 373 | Zauderer E. — Partial Differential Equations of Applied Mathematics | 33, 43, 250, 378, 412, 446 | Cleland A.N. — Foundations of nanomechanics | 219 | Kythe P.K. — Fundamental Solutions for Differential Operators and Applications | 3, 4, 10, 11, 92, 119, 208 | Gerstner W., Kistler W.M. — Spiking Neuron Models | 67 | Ramond P. — Field Theory: A modern Primer | 59, 65 | Prigogine I. — Nonequilibrium statistical mechanics | 76, 77, 78, 81, 112, 120, 121 | Stakgold I. — Green's Functions and Boundary Value Problems | 43, 194, 259, see also "Fundamental solution" | Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 2 | 683—685, 692, 1069 | De Felice F., Clarke C.J.S. — Relativity on curved manifolds | 119, 231 | Held A. (ed.) — General relativity and gravitation. 100 years after the birth of Albert Einstein (volume 1) | 256 | Kubo R., Toda M., Hashitsume N. — Statistical physics II. Nonequilibrium statistical mechanics | 158, 203, 209 | Libai A., Simmonds J.G. — The Nonlinear Theory of Elastic Shells | 204n | Havin V.P., Nikolski N.K. (eds.) — Linear and Complex Analysis Problem Book 3 (part 2) | 10.20, 12.10, 14.16, 18.16 | Bao G., Cowsar L., Masters W. — Mathematical Modeling in Optical Science | 98, 161 | Bellman R.E. — Introduction to the mathematical theory of control processes (Volume I: Linear Equations and Quadratic Criteria) | 22, 27, 72, 74, 100, 129, 137, 209, 232 | Bellman R. — Introduction to the mathematical theory of control processes (Volume II: Nonlinear Processes) | 186, 287 | Schiff L.I. — Quantum mechanics | 160—162 | MacRobert T.M. — Spherical Harmonics an Elementary Treatise on Harmonic Functions with Applications | 186 | Achenbach J.D. — Wave propagation in elastic solids | 111, 359 | Freund L.B. — Dynamic Fracture Mechanics | 65 | Adomian George — Nonlinear stochastic operator equations | 11, 38, 40, 42, 278 | McComb W. D. — The Physics of Fluid Turbulence | 539 | Deligne P., Kazhdan D., Etingof P. — Quantum fields and strings: A course for mathematicians (Vol. 1) | 891 | Borne T., Lochak G., Stumpf H. — Nonperturbative quantum field theory and the structure of matter | 151f, 253, 294 | Goodman J.W. — Introduction to Fourier Optics | 35, 40—41, 47—49 | Bracewell R.N. — The Fourier Transform and its applications | 4, 481 (see also Impulse response) | Axellson O., Barker V.A. — Finite Element Solution of Boundary Value Problems. Theory and Computation | 136—139, 230—232 | De Finetti B. — Theory of probability (Vol. 2) | 123 | Greiner W., Reinhardt J. — Quantum electrodynamics | 3ff. | Tyson R.K. (ed.) — Adaptive optics engineering handbook | 61 | Olver P.J., Shakiban C. — Applied linear. algebra | 606, 609, 615, 627, 637 | Roitberg Y. — Elliptic Boundary Value Problems In The Spaces Of Distributions | 222 | Zory P.S. — Quantum well lasers | 102 | Ding H., Chen W., Zhang L. — Elasticity of Transversely Isotropic Materials | 214, 216, 375, 380 | Berezin F.A., Shubin M.A. — The Schroedinger equation | 110, 178, 480 | Mattheij R.M.M. — Partial differential equations: modeling, analysis, computation | 61, 174 | Rebonato R. — Interest-rate option models : understanding, analysing and using models for exotic interest-rate options | 169, 195, 197-8, 199, 293-5, 498 | Rose M.E. — Relativistic Electron Theory | 211, 225, 245 | Zeidler E. — Nonlinear Functional Analysis and Its Applications: Part 1: Fixed-Point Theorems | 791 | van der Giesen E. (Editor), Wu T.Y. (Editor) — Solid Mechanics, Volume 36 | 29, 46, 223, 224 | Goodman J.W. — Statistical Optics | 395 | Scully M.O., Zubairy M.S. — Quantum optics | 578 | Christensen S.M. — Quantum theory of gravity | 425 | Bellman R., Kalaba R. — Quasilinearization and nonlinear boundary-value problems | 34, 54, 69 | Trefethen L.N., Bau D. — Numerical Linear Algebra | 284 | Arya A.P. — Introduction to Classical Mechanics | 115, 117 | Polchinski J. — String theory (volume 1). An introduction to the bosonic string | 169—171, 174—176, 208, 229—230, 275 | Stakgold I. — Boundary value problems of mathematical physics | see also "Fundamental solution" | Cramer N.F. — The Physics of Alfvén Waves | 115 | Wilmott P., Howison S., Dewynne J. — The Mathematics of Financial Derivatives : A Student Introduction | 86 | Carmeli M. — Classical Fields: General Gravity and Gauge Theory | 279 | Tsang L., Kong J.A., Ding K.- H. — Scattering of electromagnetic waves (Vol 2. Numerical simulations) | 14, 18, 63, 271, 377 | Cheng T.-P., Li L.-F. — Gauge Theory of Elementary Particle Physics | 8-10, 14-20, 189 | De Finetti B. — Theory of Probability. A critical introductory treatment(vol. 2) | 123 | Rektorys K. — Survey of applicable mathematics | 811, 892 | Herriot J.G. — Methods of mathematical analysis and computation | 135 | Eichler M. — Introduction to the Theory of Algebraic Numbers and Functions | 165ff | Beardon A.F. — Iteration of rational functions | 206, 240 | Johnson C. — Numerical solution of partial differential equations by the finite element method | 43 | Falcke H. (ed.), Hehl F.W. (ed.) — The galactic black hole: lectures on general relativity and astrophysics | 153 | Denn M. — Optimization by variational methods | 176, 177, 181, 210, 214, 229, 273, 296, 308, 328, 335, 361, 372, 378, 384, 387, 400 (see also Adjoint; Lagrange multiplier) | Marks R.J.II. — The Joy of Fourier | 118, 342, 678 | Ortega J. M. — Iterative Solution of Nonlinear Equations in Several Variables | 19 | Shilov G.E. — An introduction to the theory of linear spaces | 284 | Maxwell J.C. — Treatise on electricity and magnetism. Volume Two | 98 | Courant R., Hilbert D. — Methods of Mathematical Physics. Volume 1 | 311, 351—388 | Antoine J.-P. (ed.), Tirapegui E. (ed.) — Functional Integration: Theory and Applications | 29, 50, 77, 134, 149, 153 | Sperb R.P. — Mathematics in Science and Engineering. Volume 157. Maximum principles and their applications | 210 | Nehari Z. — Conformal mapping | 13, 38, 133, 181, 187, 357 | Mandel L., Wolf E. — Optical Coherence and Quantum Optics | 120, 127, 210, 267, 405 | Haken H. — Synergetics: an introduction | 218 | Dembo A., Zeitouni O. — Large deviations techniques and applications | 198, 213 | Dynkin E.B., Yushkevich A.A. — Markov processes; theorems and problems | 136, 222 | Amrein W.O., Sinha K.B., Jauch J.M. — Scattering Theory in Quantum Mechanics: Physical Principles and Mathematical Methods | 237 | Churchill R.V. — Operational mathematics | 219, 260—263, 268 | Lang R. — Spectral Theory of Random Schrodinger Operators: A Genetic Introduction | 13, 78 | Greiner W., Reinhardt J. — Field quantization | 145 | Beckenbach E.F., Bellman R. — Inequalities | 40—42, 93, 132—134, 141 | Saito Y. — Statistical physics of crystal growth | 148, 153, 156 | Gould H., Tobochnik J., Christian W. — An introduction to computer simulation methods | 389, 707, 709 | Rektorys K. (ed.) — Survey of Applicable Mathematics | 811, 892 | Anderssen R.S., de Hoog F.R., Lukas M.A. — The application and numerical solution of integral equations | 28, 29, 30, 154, 167, 174, 225 | Atkins P.W., Friedman R.S. — Molecular Quantum Mechanics | 453, 502 | Hobbie R., Roth B. — Intermediate Physics for Medicine and Biology, | 100 | Albeverio S.A., Hoegh-Krohn R.J. — Mathematical theory of Feynman path integrals | 28, 67, 75 | Kotz S., Johnson N.L. — Breakthroughs in Statistics: Volume 2: Methodology and Distribution | 111 | Chung K.L., Walsh J.B — Markov Processes, Brownian Motion, and Time Symmetry | 410 | Behnke H., Bachmann F., Fladt K. — Fundamentals of mathematics. Volume III. Analysis | 329, 410, 434 | Jeffreys H. — Methods Of Mathematical Physics | 220, 221, 495, 543, 634 | Greiner W. — Relativistic quantum mechanics. Wave equations | 85, 96 | Tsang L., Kong J.A. — Scattering of electromagnetic waves (Vol 3. Advanced topics) | 198, 203 | Schiff L.I. — Quantum Mechanics | 300 | Hulsbergen W.J. — Conjectures in Arithmetic Algebraic Geometry: A Survey | 42 | Golberg M.A. — Numerical Solution of Integral Equations | 132 | Adler S.L. — Quaternionic Quantum Mechanics and Quantum Fields | 169—170, 175-176, 183n.12, 218—222, 230 | Hartmann A.K., Rieger H. — Optimization Algorithms in Physics | 139 | Blomberg H.( ed.) — Algebraic theory for multivariable linear systems, Volume 166 | 215 | Zeidler E. — Oxford User's Guide to Mathematics | 395, 420, 460, 505, 564 | Mittra R., Lee S.W. — Analytical Techniques in the Theory of Guided Waves | 80, 226 | Schwinger J. — Particles, Sources, And Fields. Volume 3 | see also "Propagation function" | Sperb R.P. — Maximum principles and their applications | 210 | Bennett W.R. — Physics of Gas Lasers | 10 (Fig.) | Miller K.S., Ross B. — An Introduction to the Fractional Calculus and Fractional Differential Equations | 153 | Natterer F., Wubbeling F. — Mathematical methods in image reconstruction | 169 | Lee A. — Mathematics Applied to Continuum Mechanics | 218 | John F. — Partial Differential Equations | 107, 110 | Rodberg L.S., Thaler R.M. — Introduction to the quantum theory of scattering | 73 ff., 107—121 | Glimm J., Jaffe A. — Quantum Physics: A Functional Integral Point of View | 159, 161, 255, 332, 333, 342, see "Boundary conditions", "Covariance operators", "Dirichlet", "Neumann" | Prikarpatsky A.K., Taneri U., Bogolubov N.N. — Quantum field theory with application to quantum nonlinear optics | 27 | Farina J.E.G. — Quantum theory of scattering processes | 29—31, 38, 65 | Zory P.S. (ed.), Kelley P. (ed.), Liao P.F. (ed.) — Quantum Well Lasers | 102 | Wermer J. — Potential Theory | 75, 82 | Kashiwa T., Ohnuki Y., Suzuki M. — Path Integral Methods | 9 | Hills D.A., Kelly P.A. — Solution of Crack Problems | 21, 23—24, 29, 119 | Mattheij R.M. — Partial differential equations | 61, 174 | Gohberg I., Goldberg S., Kaashoek M. — Classes of linear operators. (volume 1) | 386 | Lions J-L., Dautray R. — Mathematical Analysis and Numerical Methods for Science and Technology: Volume 2: Functional and Variational Methods | 441, 445 | Shu-Ang Zhou — Electrodynamics of solids and microwave superconductivity | 12 | Kanwal R.P. — Generalized functions: Theory and technique | 217, 220 ff | Cercignani C. — Rarefied Gas Dynamics | 163—165 | Feynman R., Leighton R., Sands M. — Lectures on Physics 2 | I-25-4 | Hejhal D.A. — The Selberg Trace Formula for PSL(2,R) (volume 2) | 29, 39, 350, 740 | Blanchard P., Bruening E. — Mathematical Methods in Physics: Distributions, Hilbert Space Operators, and Variational Method | 106 | Flanders H. — Differential Forms with Applications to the Physical Sciences | 86 | Ascher U., Petzold L. — Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations | 168, 185 | Petzold L. — Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations | 168, 185 | Zorich V.A., Cooke R. — Mathematical analysis II | 470 | Wiedemann H. — Particle Accelerator Physics I: Basic Principles and Linear Beam Dynamics | 107 | Zorich V. — Mathematical Analysis | 470 | Moeller K. — Optics: Learning by Computing, with Examples Using Maple, MathCad®, Matlab®, Mathematica®, and Maple® (Undergraduate Texts in Contemporary Physics) | 132 | Stakgold I. — Boundary value problems of mathematical physics | 1—18, 54—56, 65—69, 71—78, 86—91, 219—220, 261—268, 271—282, 284—295, 303—321 | Stamatescu I., Seiler E. — Approaches to Fundamental Physics | 273 | Moiseiwitsch B.L. — Integral Equations | 18, 54 | Griffiths P., Harris J. — Principles of algebraic geometry | 378 | Bellac M. — Thermal Field Theory (Cambridge Monographs on Mathematical Physics) | 23, 25, 47 | Corciovei A., Costache G., Dederichs P.H. — Solid State Physics | 167 | Buckmaster J. — The Mathematics of combustion | 57, 62, 64, 69—71, 76 | Morrey C. — Multiple integrals in the calculus of variations | 44 | Kline M. — Mathematical thought from ancient to modern times | 683—685, 692, 1069 | Chui C.K. — Wavelets: a mathematical tool for signal processing | 188 | Beckenbach E., Bellman R. — Inequalities (Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge) | 40—42, 93, 132—134, 141 | Gripenberg G., Londen S.O., Staffans O. — Volterra integral and functional equations | 73, 108, see also "Differential resolvent, whole line", "Resolvent, whole line" | Krushkal` S.L., Apanasov B.N. — Kleinian Groups and Uniformization in Examples and Problems (Translations of Mathematical Monographs) | 81 |
|
|