| Книга | Страницы для поиска |
| Bartle R.G. — The Elements of Integration | 96 |
| Peebles P.Z. — Probability, random variables, and random signal principles | 7 |
| Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 1) | 118 |
| Rudin W. — Real and Complex Analysis | 10 |
| Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 2) | 118 I |
| Berkovitz L.D. — Convexity and Optimization in Rn | 4—5 |
| Folland J.B. — Real Analysis: Modern Techniques and Their Applications | 21 |
| Bogachev V.I. — Measure Theory Vol.1 | 3 |
| Halmos P.R. — Measure Theory | 21 |
| Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 1032 |
| Enderton H.B. — Elements of set theory | 27—31 |
| Ash C.J., Knight J., Sevenster A. (Ed) — Computable Structures and the Hyperarithmetical Hierarchy | 316 |
| Berberian S.K. — Fundamentals of Real Analysis | 101 |
| Humphreys J.F., Prest M.Y. — Numbers, Groups and Codes | 8311 |
| Royden H.L. — Real Analysis | 6 |
| Royden H.L. — Real Analysis | 6 |
| Lipschutz S.Ph.D. — Schaum's outline of theory and problems of finite mathematics | 38 |
| Shiryaev A.N. — Probability | 132, 139 |
| Bichteler K. — Integration - a functional approach | 38, 41, 62 |
| Rudin W. — Real and complex analysis | 10 |
| Elliot P.D.T.A. — Probabilistic Number Theory One | 29—30, 115—146 |
| Kolmogorov A.N., Fomin S.V. — Introductory real analysis | 31 |
| Feller W. — Introduction to probability theory and its applications (Volume II) | 112—113, 116 |
| Lipschutz S. — Schaum's Outline of Probability | 5 |
| Shafer G., Vovk V. — Probability and finance | 40, 291 |
| Wheeden R.L., Zygmund A. — Measure and integral. An introduction to real analysis | 205 |
| Ash R.B., Doléans-Dade C.A. — Probability and Measure Theory | 3 |
| Elliot P.D.T.A. — Probabilistic Number Theory Two: Central Limit Theorems | 29, 30, 115, 146 |
| Browder A. — Mathematical Analysis: An Introduction | 202 |
| Seymour L. — Schaum's Outline of Theory and Problems of Discrete Math | 7, 17 |
| Aliprantis C. — Principles of real analysis | 95, 150 |
| Kolmogorov A.N., Fomin S.V. — Measure, Lebesgue Integrals, and Hilbert Space | 20 |
| Kuttler K.L. — Modern Analysis | 123 |
| Hewitt E., Stromberg K. — Real and abstract analysis: a modern treatment of the theory of functions of a real variable | 4 |
| Kirillov A.A., Gvishiani A.D., McFaden H.H. — Theorems and Problems in Functional Analysis | 12 |
| Bear H.S. — A Primer of Lebesgue Integration | 136 |
| Bichteler K. — Integration Theory | 6, 11 |
| Lipschutz S., Lipson M.L. — Schaum's outline of theory and problems of discrete mathematics | 7, 17 |
| Monk J.D. (ed.) — Handbook of Boolean Algebras, Vol. 1 | 5, 8f, 10, 30, 214 |
| Williams D. — Probability with Martingales | (1.1) |
| Kline M. — Mathematics for the Nonmathematician | 491 ff. |
| Cheney W. — Analysis for Applied Mathematics | 421 |
| Gill A. — Applied Algebra for the Computer Sciences | 101 |
| Hogg R.V., Craig A.T. — Introduction to Mathematical Statistics | 4 |
| Yaglom A.M., Yaglom I.M. — Probability and Information | 37 |
| Klein E. — Mathematical methods in theoretical economics | 11 |