Проблема Штейнера в пространстве Громова—Хаусдорфа: случай конечных метрических пространств

Иванов А.О., Николаева Н.К., Тужилин А.А. 2 апреля 2016 г.

Аннотация

Показано, что каждое конечное семейство конечных метрических пространств, рассматриваемое как подмножество пространства метрических компактов, наделенного метрикой Громова–Хаусдорфа, соединяется некоторым минимальным деревом Штейнера.

Библиография: 6 названий.

1 Введение

Настоящая статья посвящена проблеме Штейнера в пространстве метрических компактов, наделенном метрикой Громова—Хаусдорфа. Показано, что если граничное множество состоит только из конечных метрических пространств, то оно соединяется некоторым минимальным деревом Штейнера. В случае общих метрических компактов авторами была решена проблема Штейнера только для двухточечных границ [1], где она равносильна существованию кратчайших кривых, соединяющих произвольную пару точек пространства. Для большего числа граничных точек попытки применить предельный переход с использованием критерия Громова о предкомпактности к успеху не привели. Однако мы надеемся, что разработанная техника поможет или доказать теорему существования и в общем случае, или построить контр-пример.

2 Основные определения и результаты

Пусть X — произвольное метрическое пространство. Расстояние между точками $x, y \in X$ будем обозначать через |xy|. Пусть $\mathcal{P}(X)$ — семейство всех непустых подмножеств X. Для $A, B \in \mathcal{P}(X)$ положим

$$d_H(A,B) = \max \{ \sup_{a \in A} \inf_{b \in B} |ab|, \sup_{b \in B} \inf_{a \in A} |ab| \}.$$

Величина $d_H(A,B)$ называется расстоянием Хаусдорфа между $A\ u\ B.$

Отметим, что $d_H(A,B)$ может равняться бесконечности (например, когда $X=A=\mathbb{R}$ и $B=\{0\}\subset\mathbb{R}$), а также равняться нулю на неравных A и B (например, когда $X=\mathbb{R}, A=[a,b]$ и B=[a,b)).

Пусть $\mathcal{H}(X) \subset \mathcal{P}(X)$ обозначает множество всех непустых замкнутых ограниченных подмножеств X.

Предложение 2.1 ([2]). Ограничение d_H на $\mathcal{H}(X)$ является метрикой.

Пусть X и Y — метрические пространства. Тройку (X',Y',Z), состоящую из метрического пространства Z и двух его подмножеств X' и Y', изометричных соответственно X и Y, назовем peanusaqueŭ napu (X,Y). Положим

$$d_{GH}(X,Y) = \inf\{r : \exists (X',Y',Z), d_H(X',Y') \le r\}.$$

Величина $d_{GH}(X,Y)$ называется расстоянием Громова-Хаусдорфа между $X\ u\ Y.$

Обозначим через \mathcal{M} множество всех компактных метрических пространств, рассматриваемых с точностью до изометрии.

Предложение 2.2 ([2]). Ограничение d_{GH} на \mathcal{M} является метрикой.

Расстояние Громова—Хаусдорфа удобно изучать в терминах соответствий. Пусть X и Y — произвольные непустые множества. Положим $\mathcal{P}(X,Y)=\mathcal{P}(X\times Y)$. Элементы из $\mathcal{P}(X,Y)$ называются *отношениями* между X и Y. Если $X'\subset X$ и $Y'\subset Y$ — непустые подмножества, а $\sigma\in\mathcal{P}(X,Y)$, то положим

$$\sigma|_{X'\times Y'} = \{(x,y) \in \sigma : x \in X', y \in Y'\}.$$

Отметим, что $\sigma|_{X'\times Y'}$ может оказаться пустым и, тем самым, не принадлежащим $\mathcal{P}(X',Y')$.

Пусть $\pi_X : (x,y) \mapsto x$ и $\pi_Y : (x,y) \mapsto y$ — канонические проекции. Отношение $\sigma \in \mathcal{P}(X,Y)$ называется соответствием, если ограничения π_X и π_Y на σ сюръективны. Множество всех соответствий между X и Y обозначим через $\mathcal{R}(X,Y)$.

Если X и Y — метрические пространства, то для каждого отношения $\sigma \in \mathcal{P}(X,Y)$ определено его *искажение*

$$\operatorname{dis} \sigma = \sup \Big\{ \big| |xx'| - |yy'| \big| : (x,y), (x',y') \in \sigma \Big\}.$$

Предложение 2.3 ([2]). Пусть X и Y — метрические пространства. Тогда

$$d_{GH}(X,Y) = \frac{1}{2} \inf \{ \operatorname{dis} R : R \in \mathcal{R}(X,Y) \}.$$

Для метрического пространства X через $\operatorname{diam} X$ обозначим его $\partial ua-$ метр: $\operatorname{diam} X = \sup\{|xy| : x, y \in X\}.$

Следствие 2.4 ([2]). Для любых метрических пространств X и Y таких, что диаметр по крайней мере одного из них конечен, имеем

$$d_{GH}(X,Y) \ge \frac{1}{2} |\operatorname{diam} X - \operatorname{diam} Y|.$$

Соответствие $R \in \mathcal{R}(X,Y)$ назовем *оптимальным*, если $d_{GH}(X,Y) = \frac{1}{2}$ dis R. Множество всех оптимальных соответствий между X и Y обозначим через $\mathcal{R}_{\mathrm{opt}}(X,Y)$.

Предложение 2.5 ([3], [4], [5]). Для $X, Y \in \mathcal{M}$ имеем $\mathcal{R}_{opt}(X,Y) \neq \emptyset$.

Пусть $\mathcal{M}_n \subset \mathcal{M}$ состоит из всех метрических пространств, каждое из которых имеет не более чем n точек; $\mathcal{M}(d) \subset \mathcal{M}$ — из всех пространств, диаметры которых не больше d; положим $\mathcal{M}_n(d) = \mathcal{M}_n \cap \mathcal{M}(d)$.

Предложение 2.6 ([2]). Пространство $\mathcal{M}_n(d)$ компактно.

Напомним, что *простым графом* называется пара (V, E), состоящая из конечного множества V и некоторого множества E двухэлементных подмножеств V. Для удобства, вместо $\{v,w\}$ будем писать vw. Терминологию теории графов см. например в [6]. Мы рассматриваем только простые графы, поэтому слово "простой" будем опускать.

Пусть X — произвольное множество и G=(V,E) — граф, для которого $V\subset X$. В этом случае будем говорить, что G — граф на множестве X. Пусть $M\subset X$ — произвольное конечное подмножество, и G=(V,E) — связный граф на X, у которого $V\supset M$. Про такой граф будем говорить, что он соединяет M; при этом вершины из M будем называть граничными, а вершины из $V\setminus M$ — внутренними.

Пусть G=(V,E) — граф на метрическом пространстве X. Для ребра $e=vw\in E$ его ∂ лина |e| определяется как расстояние |vw| между его вершинами. Длина |G| графа G — сумма длин всех ребер графа G.

Для каждого конечного подмножества M метрического пространства X число

$$\operatorname{smt}(M,X)=\inf\bigl\{|G|:G-$$
граф на $X,$ соединяющий $M\bigr\}$

называется длиной минимального дерева Штейнера на М.

Следующий результат очевиден.

Предложение 2.7. Для каждого конечного подмножества M метрического пространства X имеем

$$\operatorname{smt}(M,X) = \inf\{|G|: G - \operatorname{depero} \ \operatorname{ha} \ X, \ \operatorname{coeduh}$$
яющее $M\}.$

Множество всех графов G на X, соединяющих $M \subset X$ и таких, что $|G| = \operatorname{smt}(M,X)$, будем обозначать через $\operatorname{SMT}(M,X)$. Отметим, что $\operatorname{SMT}(M,X)$ может быть пустым. Если $\operatorname{SMT}(M,X) \neq \emptyset$, то каждый граф $G \in \operatorname{SMT}(M,X)$ не содержит циклов и называется минимальным деревом Штейнера на M.

Техника, разработанная в [7] для римановых многообразий, тривиальным образом обобщается и на ограниченно компактные метрические пространства.

Предложение 2.8. Пусть X — ограниченно компактное метрическое пространство. Тогда для каждого непустого конечного $M \subset X$ имеем $\mathrm{SMT}(M,X) \neq \emptyset$.

Следующий результат вытекает из 2.6 и 2.8.

Следствие 2.9. Для любого непустого конечного множества $M \subset \mathcal{M}_n(d)$ имеем $\mathrm{SMT}(M,\mathcal{M}_n(d)) \neq \emptyset$.

Приводимая ниже теорема является основным результатом настоящей статьи.

Теорема 2.1. Для каждого $M = \{m_1, \ldots, m_k\} \subset \mathcal{M}_n$ выполняется

$$SMT(M, \mathcal{M}) \neq \emptyset$$
.

Доказательство. Положим $r = \operatorname{smt}(M, \mathcal{M})$, и пусть $\mathcal{T}(M)$ состоит из всех деревьев G на \mathcal{M} , соединяющих M и таких, что $|G| \leq r+1$. По определению smt и в силу 2.7, имеем $\mathcal{T}(M) \neq \emptyset$ и

$$\operatorname{smt}(M, \mathcal{M}) = \inf\{|G| : G \in \mathcal{T}(M)\}.$$

Выберем произвольный граф $G = (V, E) \in \mathcal{T}(M)$.

Лемма 2.10. Положим $d = \max_i \{ \operatorname{diam} m_i \}$ $u \ \widehat{d} = 2r + d + 2$, тогда $V \subset \mathcal{M}(\widehat{d})$.

Доказательство. Если существует $v \in V$, диаметр которого больше \widehat{d} , то, в силу 2.4, имеем

$$|G| \ge d_{GH}(v, m_1) \ge \frac{1}{2} |\operatorname{diam} v - \operatorname{diam} m_1| > \frac{1}{2} (2r + d + 2 - d) = r + 1,$$

противоречие.

Конструкция 2.11. Для каждого $e = vw \in E$ выберем некоторое $R_e \in \mathcal{R}_{\mathrm{opt}}(v,w)$, существующее в силу 2.5. Легко видеть, что для каждого $x \in \sqcup_i m_i$ существует дерево $T_x = (P_x, F_x)$ такое, что P_x получено из V выбором в каждом компакте $v \in V$ по одной точке p_v , причем так, что для каждого $vw \in E$ выполняется $p_v p_w \in R_e$, а множество ребер F_x дерева T_x состоит в точности из всех таких пар $p_v p_w$. Таким образом, отображение $v \mapsto p_v$ является изоморфизмом графов G и T_x . Дерево T_x назовем нитью, выпущенной из T_x

Пусть $m=\sqcup_{i=1}^k m_k$ и N — число точек в m. Выберем для каждого $x\in m$ некоторую нить T_x . Для каждого $v\in V$ определим $v'\subset v$ следующим образом:

$$v' = \{ y \in v : \exists x \in m, \ y \in P_x \}.$$

Если e=vw, то положим e'=v'w'. Отметим, что для каждого $v\in V$ имеем $v'\in\mathcal{M}_N$.

Пусть $V' = \{v'\}_{v \in V}$. Через G' = (V', E') обозначим граф, в котором $v'w' \in E'$ тогда и только тогда, когда $vw \in E$. В силу сказанного выше, G' — граф на \mathcal{M}_N . Ясно также, что отображение $v \mapsto v'$ является изоморфизмом графов G и G'.

Следующее свойство выбранных $v' \subset v$ мгновенно вытекает из построения.

Лемма 2.12. Для любого $e = vw \in E$ имеем $R_{e'} := R_e|_{v' \times w'} \in \mathcal{R}(v', w')$ и dis $R_{e'} \leq \operatorname{dis} R_e$. В частности, $|e'| \leq |e|$, откуда $|G'| \leq |G|$ и, значит, $G' \in \mathcal{T}(M)$.

Применим 2.10 и 2.12.

Следствие 2.13. Построенное выше $G' \in \mathcal{T}(M)$ является деревом на $\mathcal{M}_N(\widehat{d})$ и, значит,

$$\operatorname{smt}(M, \mathcal{M}) = \operatorname{smt}(M, \mathcal{M}_N(\widehat{d})).$$

Осталось применить 2.9.

Список литературы

- [1] Ivanov A.O., Nikolaeva N.K., Tuzhilin A.A. The Gromov-Hausdorff Metric on the Space of Compact Metric Spaces is Strictly Intrinsic. ArXiv e-prints, arXiv:1504.03830, 2015.
- [2] Бураго Д.Ю., Бураго Ю.Д., Иванов С.В. Курс метрической геометрии. Москва-Ижевск, Институт компьютерных исследований, 2004.
- [3] Ivanov A.O., Iliadis S., Tuzhilin A.A. Realizations of Gromov-Hausdorff Distance. ArXiv e-prints, arXiv:1603.08850, 2016.
- [4] Chowdhury S., Memoli F. Constructing Geodesics on the Space of Compact Metric Spaces. ArXiv e-prints, arXiv:1603.02385, 2016.
- [5] http://mathoverflow.net/questions/135184/for-which-metric-spaces-is-gromov-hausdorff-distance-actually-achieved?rq=1
- [6] Емеличев В.А. и др. Лекции по теории графов, М.: Наука, 1990.
- [7] Иванов А.О., Тужилин А.А. *Теория экстремальных сетей*. Москва-Ижевск: Институт компьютерных исследований, 2003.