Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Further application of the statistical thermodynamics of curved surfaces to scaled particle theory
Авторы: J. J. Vieceli, H. Reiss
Аннотация:
The thermodynamics of curved boundary layers is combined with scaled particle theory to determine the rigid-sphere equation of state. In particular, the boundary analog of the Gibbs-Tolman-Koenig-Buff equation is solved for a rigid-sphere fluid, using the approximation that the distance between the surface of a cavity and its surface of tension is a function of the density only (the first-order approximation). This, in conjunction with several exact conditions onG, the central function of scaled particle theory, leads to an approximate rigid-sphere fluid equation of state and a qualitatively correct rigid-sphere solid equation of state. The fluid isotherm compares favorably with previous results (2.9 % error in the fourth virial coefficient), but due to the inaccuracy of the solid isotherm, no phase transition is obtained. The theory described here is to be contrasted with previous approaches in that a less arbitrary functional form forG is assumed, and the surface of tension and cavity surface are not assumed to be coincident. The cycle equation of Reiss and Tully-Smith is rederived by a simpler route and shown to be correct to all orders of cavity curvature, rather than only first order as was originally thought. A new exact condition, obtained from the compressibility equation of state, is used as a boundary condition for the cycle equation to determine the location of the equimolecular surface.