Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Abell M.L., Braselton J.P. — Mathematica by Example
Abell M.L., Braselton J.P. — Mathematica by Example



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Mathematica by Example

Авторы: Abell M.L., Braselton J.P.

Аннотация:

Updated to be completely compatible with Mathematica version 3.0; designed for Mathematica beginners: a valuable addition to ANY Mathematica user's library; new applications from a variety of fields, especially biology, physics, and engineering, are included throughout the text; additional examples, especially in chapters one through six, should make this edition even more useful to instructors, students, business people, engineers, and other professionals using Mathematica on a variety of platforms; Step-by-step instructions for all Mathematica implementations; and CD-ROM Enclosed! All Mathematica input that appears in the book is included on the enclosed CD-ROM, which will operate on Macintosh, Windows 3.1.1 and 95, and UNIX machines with Mathematica 3.0 installed.


Язык: en

Рубрика: Руководства по программному обеспечению/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: revised edition

Год издания: 1994

Количество страниц: 523

Добавлена в каталог: 11.12.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Equations, graphing      64 65 73 81—83 147—149 485—487 492—495
Equations, integrodifferential      448
Equations, literal      89 140
Equations, matrix      308—315
Equations, parametric, defining      65 66 81—83 168—172
Equations, parametric, graphing      65 66 74 76 81—83 168—172
Equations, polynomial      88—91
Equations, recurrence      269
Equations, solutions of      84—88
Equations, system of      85—88 308—315
Equations, trigonometric      85 92
Equilibrium point      450
Equilibrium point, center      444 450
Equilibrium point, saddle      450
Equilibrium point, stable node      450
Equilibrium point, stable spiral      450
Equilibrium point, unstable node      450
Equilibrium point, unstable spiral      450
EulerGamma      27
Evaluate      143 191 192 200 234 235 245 293 373 377 395 400—402 408—410 413
Evaluating functions      25 28 31 39 45—52
Exact differential equation      369
EXP      28 29
expand      9 40 47 54 334
Expand, Trig      54 361
ExpandAll      42 367 420 422
ExpandDenominator      42
ExpandNumerator      42
Extracting elements from lists      236—240
Extracting elements from matrices      300—304
Extracting elements from tables      300—304
Factor      40 43 104 116 117 251 265 266 366 403
Factorial (!)      6 109 177 178 190
Factoring expressions      40
Fibonacci numbers      231 232
FindRoot      90—93 98 99 127 166 383 466
first      236
First-order differential equation, exact      369
First-order differential equation, homogeneous      366
First-order differential equation, linear      371
First-order differential equation, separable      364
fit      277 278 281 282 284
Flatten      395 434 442 444 446 448
Folium of Descartes      65
Fourier series      285
Fourier series, kth term      285
Fourier series, partial sum      285
FourierCosSeriesCoefficient      289
FourierSinSeriesCoefficient      289
FourierTransform, FourierCosSeriesCoefficient      289
FourierTransform, FourierSinSeriesCoefficient      289
FourierTransform, FourierTrigSeries      289
FourierTransform, NFourierTrigSeries      289
FourierTrigSeries      289
Fractions, partial fraction decomposition      41 44 367
Fractions, simplifying      24 40 41 43 44 48 103—107 359 360 392 393
Frame      59 71 73 87 93 143 146 149 216 223 365 369
Free-falling bodies      383—387
FresnelC      220
FresnelS      220
Function Browser      19—21
Function of a single variable, defining      45—47
Function of a single variable, graphing      56—64
Function of two variables, defining      48
Function of two variables, graphing      66—69
Function, composing, Composition      52—54
Function, composing, Nest      52 54 55
Function, concave, down      119
Function, concave, up      119
Function, decreasing      119
Function, evaluating      25 28 31 39 45—52
Function, increasing      119
Function, linearly, dependent      387
Function, linearly, independent      387
Function, parametric, defining      65 66 81—83 168—172
Function, parametric, graphing      65 66 74 76 81—83 168—172
Function, piecewise-defined      62—64 122 125 286 428 430 436
Function, recursively defined      63 64 198 199 232 286 336 423 424 428 430
Function, vector-valued      49 50
Function, which remember the values computed      198 199 232 290 320 336 423 424 468 472—474
Fundamental set of solutions      390
future value      254
Gauss — Jordan elimination      313—315
General solution      391
Geometric series      6 174
getting started      14
GoldenRatio      27 59 61
grad      347 348 351 352 359
Gradient      347 349 497 499
Gram — Schmidt process      318—322
GramSchmidt      7 8 322
Graphics      see ComplexMap see see see see see see see see see
Graphics, BarChart      490 491
Graphics, Line      131 460
Graphics, PieChart      491 492
Graphics, Point      144 243 280 283 460
Graphics, PointSize      144 243 280 283 460
Graphics, PolarPlot      487—489
Graphics, three-dimensional      see ParametricPlot3D seePlot3D
Graphics, two-dimensional      see ParametricPlot see see
Graphics3D      501 503—508
Graphics3D, BarChart3D      495 496
GraphicsArray      66 73 76 80 120 124 133 152 153 155 201 277 284 293 326 375 410 434 449 455 461 475 483 484 486 489 492 495 496 502 507 508
GrayLevel      55 57 58 60 94 106 107 123 127 152 153 163 164 165 187 188 191 245 460
Green's theorem      354—356
GridLines      60
Harmonic motion      413
Heat equation      289—293
Helix      506
help      8—21
Help Pointer      15
Help, ?      8 11 12 46 56 180 220
Help, ?? (Information)      10 67 70 75
Help, Complete Selection      13
Help, Function Browser      19—21
Help, Getting Started      14
Help, Help Pointer      15
Help, Information (??)      10 67 70 75
Help, Make Template      13
Help, Names      11
Help, Options      9 10 59
Help, Shortcuts      14 15
Help, Why the Beep?      16—18
Hermite polynomials      233 234 413
HermiteH      233 234 413
Higher-order derivatives      112 113 205 206 208
Homogeneous differential equation      366 387 390 391 394
Hooke's law      403
Hyperbola      493—495
Hyperbolic functions, Cosh      36 37
Hyperbolic functions, inverse, ArcCosh      34 38 39
Hyperbolic functions, inverse, ArcCoth      34
Hyperbolic functions, inverse, ArcSech      34
Hyperbolic functions, inverse, ArcSinh      38
Hyperbolic functions, inverse, ArcTanh      38 39
Hyperbolic functions, Sinh      36 37
Hyperbolic functions, Tanh      36 37
Hyperboloid of one sheet      81
Hyperboloid of two sheets      81
Hyperboloid, graphing      82 83
i      27
icosahedron      500
Identity      58
Identity matrix      299
IdentityMatrix      299 333
if      152
Implicit differentiation      142—147
Implicit differentiation, tangent line      144
implicitplot      147 148 492—495
ImplicitPlot, ImplicitPlot      147 148 492—495
ImplicitPlot, PlotPoints      148
ImplicitPlot, Ticks      493 494
Improper integral      175 176
Increasing function      119
infinity      6 27 101 108 154 156 174—179 181 183
Inflection point      116
Information (??)      10 67 70 75
InputForm      266
Inscribed rectangles      149 150—152
Inserting comments into code      319
INTEGER      232
Integral test      176
Integral, approximating      161 162 219 220 226
Integral, arc length      166
Integral, area      162—164 487—489
Integral, convolution      435
Integral, definite      158—160
Integral, double      218—220
Integral, double, approximating      216
Integral, double, polar coordinates      360—362
Integral, double, volume      221—226
Integral, improper      175 176
Integral, indefinite      157 158
Integral, Mean-Value theorem      172
Integral, polar coordinates      360—362 487—489
Integral, triple      226 228
Integral, triple, volume      227 228
Integral, volume of solids of revolution      167—172
Integrate      157—163 169 173 175 176 218—220 226—228 290 356 357 360—362 364 368 370 371 397 433 488 489
Integrodifferential equation      435
Interest      252—254
InterpolatingFunction      376 377 408 451 453—457
InterpolatingPolynomial      277 281
Intersection points of graphs      94—99
Interval of convergence      180—184
Inverse      304 305 309
Inverse Laplace transform      426 429
InverseLaplaceTransform      426 429 437 440 459 460
Irregular singular point      418
Jacobian matrix      451
JacobianDeterminant      348
JacobianMatrix      348
Join      247 320
Jordan block      331
Jordan canonical form      332
Jordan Matrix      331
JordanDecomposition      332 333
Kernel      322
L-R-C circuit      435—438
Labeling columns of a table      218 248
Lagrange multipliers      79 80 214—218
Lagrange's theorem      214
Laguerre polynomials      244
LaguerreL      244
Laplace transform      426—429
Laplace transform of a periodic function      428
Laplace transform, inverse      429
Laplace transform, solving differential equations      430—440 458—461
LaplaceTransform, InverseLaplaceTransform      426 429 437 440 459 460
LaplaceTransform, LaplaceTransform      426 427 437 439
Laplacian      347 349—351
last      236
Legendre polynomials      246 247
LegendreP      246 247
Lemniscate of Bernoulli      146
Level curves, graphing      70—74 485—487
LIMIT      101 104—109
Limit cycle      457
Limit, Direction      108
Limits of functions of two variables      201—203
Limits, computing      101 103—107
Limits, estimating      101—103 201 202
Limits, infinite      102 105 108
Limits, numerical      109 110
Limits, one-sided      108
Line      131 460
Line continuation (\)      25 250
Linear differential equation      371 387
Linear differential equation, first-order      371
Linear equations      84
Linear equations, system of      86 308—315
Linear programming      337—346
Linear programming, dual problem      339 340
Linear programming, standard form      337 338
Linear transformation      322
Linear transformation, associated matrix      322
Linear transformation, kernel      322
Linear transformation, rotation      324—326
LinearAlgebra      see MatrixManipulation see
Linearly dependent      387
Linearly independent      387
LinearProgramming      341 342
LinearSolve      311—313
Listable      245 246
listplot      177 179 240 241 243 278
ListPlot, Plot Joined      280
Lists of functions      232—234 244 245
Lists of functions, graphing      234 235 244 245
Lists of random numbers      232
Lists, adding elements to      251
Lists, defining      229—233
Lists, displaying      240 241
Lists, dropping elements from      251
Lists, evaluating each element by a function      237 238 245—249 251 252
Lists, extracting elements of (Part)      236—240
Lists, first part (First)      236
Lists, graphing      240—244
Lists, joining      247
Lists, last part (Last)      236
Lists, number of elements in (Length)      236
Lists, of the same object      232
Lists, product of numbers in      250
Lists, sum of numbers in      250—252
Literal equations      89 140
Loading packages      4—7
Loading packages, Master      5
Local maximum      209
Local minimum      209
LOG      28 30 31
LogicalExpand      194 412 416
Logistic equation      377—381
Lotka — Volterra      451—455
Maclaurin polynomial      186 189
Make Template      13
Map (/@)      10 102 202 243 246—249 251 280 283 380 449 494
MapAt      249
Master      5
Matrix coefficient      308 313
Matrix equations      308—315
Matrix identity      299 333
Matrix, augmented      313
Matrix, characteristic      326
Matrix, characteristic equation      326 391
Matrix, characteristic polynomial      326 327 333 334
Matrix, column space      316 317
Matrix, conjugate transpose      334
Matrix, defining      296—300
Matrix, determinant      304
Matrix, eigenvalues      326—331 334—337 442 444 452 453 456
Matrix, eigenvalues, approximating      329 330
Matrix, eigenvalues, approximating, QR Method      334—337
Matrix, eigenvectors      326 329 330
Matrix, eigenvectors, approximating      330
Matrix, extracting parts      300—304
Matrix, inverse      304 305 309
Matrix, Jacobian      451
Matrix, Jordan      339
Matrix, Jordan, block      331
Matrix, Jordan, canonical form      332
Matrix, nullity      316
1 2 3 4
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте