Авторизация
Поиск по указателям
Bergeron F., Labelle G., Leroux P. — Combinatorial Species and Tree-like Structures
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Combinatorial Species and Tree-like Structures
Авторы: Bergeron F., Labelle G., Leroux P.
Аннотация: The combinatorial theory of species, introduced by Joyal in 1980, provides a unified understanding of the use of generating functions for both labelled and unlabelled structures and as a tool for the specification and analysis of these structures. Of particular importance is their capacity to transform recursive definitions of tree-like structures into functional or differential equations, and vice versa. The goal of this book is to present the basic elements of the theory and to give a unified account of its developments and applications. It offers a modern introduction to the use of various generating functions, with applications to graphical enumeration, Polya theory and analysis of data structures in computer science, and to other areas such as special functions, functional equations, asymptotic analysis and differential equations. This book will be a valuable reference to graduate students and researchers in combinatorics, analysis, and theoretical computer science.
Язык:
Рубрика: Математика /Алгебра /Комбинаторика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1998
Количество страниц: 457
Добавлена в каталог: 10.03.2005
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Generating series, type 15 84 106 122
Good — Lagrange inversion formula 200 203 220
Good's formula (one dimensional) 183
Graphs, 2-connected 299
Graphs, 2-edge-connected 300 307
Graphs, complete 297
Graphs, constructed on vertices and edges 111 114
Graphs, directed 7 74 76 77 409 411 415
Graphs, discrete 297
Graphs, even 351
Graphs, Husimi 300
Graphs, multigraphs 114 308
Graphs, non-separable (or 2connected) 299—304
Graphs, sagital 7
Graphs, simple 4 7 28 46 64 71 74 76 100 146 151 158 297 308 351 405 409 411 415
Graphs, simple, connected 7 27 46 64 297—298
Graphs, simple, disconnected 27
Graphs, tri-chromatic 100 116
Graphs, unlabelled 405
Graphs, with loops 77
Graphs, without end points 304
Groebner's formula 365
Group actions 393
Group actions, commuting 407
Group actions, isomorphism 394
Group actions, transitive 140 395
Group of rotations of a cube 397 406
Group, alternating 144 321
Group, cyclic 144 321 406
Group, dihedral 144 321 406
Group, symmetric 11 399
H-enriched rooted trees 193 210 229
H-enriched rooted trees, increasing 374—375
Hadamard product 64 65 349
Hanlon's inversion method 305 306
Hayman's theorem 258
Head vertex 62
Heavy rooted trees 224 241 390
Hedges 10 189
Height of a binary tree 238
Hereditary finite sets 338
Hermite polynomials 89 94 184 185
History of increasing rooted trees 383
Homeomorphically irreducible rooted trees 283
Homeomorphically irreducible trees 188 283 291 337
Homogeneous (complete) symmetric functions 88
Hurwitz's inversion formula 184
Husimi graphs 300
Idempotent endofunctions 221
Identity tree 321
Implicit function theorem 192 209
Implicit species theorem 195
Implicit species theorem, multisort species 199
Implicit species theorem, virtual species 212
Increasing binary rooted trees 344 345 359 373
Increasing binary rooted trees, complete 345 358 373
Increasing functions 343
Increasing mobiles 365 391
Increasing ordered rooted trees 365 379 383
Increasing ordered rooted trees with even fibers 381
Increasing ordered rooted trees, m-ary 365
Increasing rooted trees 344 359 367
Increasing rooted trees with even fibers 380
Increasing rooted trees, H-enriched 374—375
Increasing rooted trees, m-ary 365
Increasing rooted trees, plane 363
Increasing rooted trees, planted plane (or planar) 363
Increasing rooted trees, R-enriched 341 361—363 365 371 389 392
Increasing rooted trees, ternary 368 376 380
Indegree 166
Induced order 343
Inj, injections 112
Injective assemblies 332
Injective coloring 324
Injective functions 91
Integral of (weighted) L-species 348 350
Internal vertices 361
Inv, involutions 7
Inventory 81 90
Inverse (multiplicative) 124
Inverse under substitution 130 132
Inversion table 355
Inversions in trees (and rooted trees) 381
Inversions of permutations (lists) 346
Involutions 7 16 89 94 221 251 413
Isomer 288
Isomorphic rooted trees 5
Isomorphism of group actions 394
Isomorphism of L-species 345
Isomorphism of species 21
Isomorphism of structures 3 6 102
Isomorphism of weighted sets 81
Isomorphism type 3 6 14
Isomorphism type, according to sorts 110
Iterated integrals 386
Iterative order 232—234
Jac, Jacobi endofunctions 203
Jacobi endofunctions 172 203 245
Jacobi identity 203 219
Jacobi permutations 374
Jacobi polynomials 172 184 203—205
Jacobi property 203
Joni's multidimensional inversion theorem 221
k-set 101
k-sort -species 353
k-sort species 102
k-sort species, atomic 158
k-sort species, molecular 155
L, linear orders 7
Labeled structures 12
Labelings 399
Labelings, G-reduced 317 399
Labelings, orderly 366
Lag, Laguerre configurations 95
Lagrange inversion formula 164 174 183 239
Lagrange inversion formula, alternating bidimensional 215
Lagrange inversion formula, weighted version 189
Laguerre configurations 95 213
Laguerre polynomials 95 172 184 214
Laplace — Carson transform 350
Leaf counter 80
Leamer code 355
Leaves 166 181
Left branch 373
Left to right minima 22
Leftist (binary) trees 246
Lemma of R-enriched endofunctions 173
Li — Groebner — Taylor formula 365
Light rooted trees 224 241 390
Limit of a sequence of species 23
Linear (or total) orders, lists 7 10 12 15 50 131 322 346 347 354 356 359 409 411 413 415 417
Linear (or total) orders, lists of length k 37 346
Linear (or total) orders, lists, connected 131 348
Linear (or total) orders, lists, non-empty 57 138
Linear differential equation 377
Linear functional equation 195
Linear Read Bajraktarevic equation 233
Linearization coefficients 95
Lucas numbers 56
Lukasicvich paths 384
Lump of a graph 307
Lyndon words 92 98
m-ary relations 74 76 79
m-ary rooted trees 211
MacMahon's master theorem 217
Major index of a permutation (list) 346
Marked trees 292
Marked trees, rooted 292
Mehler's formula 94
Meir and Moon theorem 260 274
Mixed species 380
Mixed trees 292
Mobiles 240 261
Mobiles, increasing 365 391
Molecular decomposition 141 148 150 226 299 410 421—424 430 431
Molecular decomposition, standard form 142
Molecular k-sort species 155
Molecular species 140 143—147 154—155 311 314 317—318 328 333 418—420 431 432
Molecules, alcohol 287—288
Molecules, alkane 287—288
Moronism of A-weighted sets 81
Morphism of actions 394
Motzkin paths 267 389
Multicardinality 101
Multifunction 101
Multigraphs 114 308
Multiplicable family of species 39
Multiset 101
Multisort L-species 353
Multisort species 102 199
n, as a species 31
Naturality condition 21
Negative part of a virtual species 123
Negative virtual species 123
Negligible 247
Neighbors of vertices 178
Newton — Raphson iteration 222—225
Newton — Raphson iteration for differential equations 389
Newton — Raphson iteration for Read — Bajraktarevic equations 246
Newton — Raphson iteration, higher order 242
Non-separable (or 2-connected) graphs 299—304
Oct, octopuses 12
Octopuses 12 55 56 57 69 221 409 412 415 417
Octopuses, alternating 113
Octopuses, regular 56
Odd alternating permutations 351 359
Odd complete increasing binary rooted trees 359
Odd part of a species 38 410 412 414 416 417
Odd sets 29 348 409 411 415 417
Orbit 395
Ord, order relations 47
Order of a formal power series 264
Order of a graph 297
Order of an unlabelled structure 14
Order of contact 22 23 194
Order relations, partial orders 47 138
Order relations, partial orders, reduced 57 138
Order, induced 343
Order, iterative 232—234
Order, Strahler 235 245
Order, to be of 247
Ordered partitions see “Ballots”
Ordered rooted trees 10 167 185—186 190 195 261 284 379
Ordered rooted trees, increasing 363 379 383
Orderly labelling 366
Ordinal product 348 349
Ordinal sum 343
Oriented cycles see “Cyclic permutations”
Oriented graphs see “Directed graphs”
Oriented rooted trees 285—286 292
Oriented sets 144 152 384
Oriented trees 285—286 292
Otter's formula 277 279
P, polygons 10
Par, set partitions 7
Paraffins 287—288
Parenthesizations 198 379
Parenthesizations, commutative 10 198 222 241 379 410 412 414
Partial differentiation 105 354
Partial orders 47 138
Partial partitions 49
Partitional composition see “Substitution”
Partitions see “Set partitions”
Permutation representation 394
permutations 7 12 15 31 40 41 45 83 91 99 114 133 139 142 220 251 266 322 346 409 411 413 415 417
Permutations, alternating 344 345
Permutations, alternating, even 351 359
Permutations, alternating, odd 351 359
Permutations, colored 93
Permutations, colored, asymmetric 93
Permutations, compatible 218
Permutations, compatible, connected 219
Permutations, even 144 337 409 411 413
Permutations, Jacobi 374
Permutations, R-enriched 218
Permutations, random 64
Permutations, standard form 22
Permutations, tri-colored 107
Plane trees 178 180 182 190
Plane trees, bicolored 215—217
Plane trees, rooted 168 178 186 190 284
Planted plane (or planar) rooted trees 167
Plethystic substitution 43 84 107
Pointed triangular cacti 305
Pointing, generalized 117
Pointing, species 60 410 412 414 416 418
Pointing, virtual species 125
Pointing, weighted multisort species 106
Pointing, weighted species 84
Polya — Redfield theorem 319 403
POLYGONS 10 30 144 161 297
Polygons, n-gons 30
Polynomial species 111
Polynomials, Bernouilli 268
Polynomials, cycle index 397
Polynomials, Eulerian 355
Polynomials, Hermite 89 94 184 185
Polynomials, Jacobi 172 184 201—205 213
Polynomials, Laguerre 95 172 184 214
Polynomials, tree inversion 297 382
Positive part of virtual species 123
Positive species 123
Power sum symmetric functions 83 333
PQ-trees 24
Preo, preorders 47
Preorders 47
Product of (weighted) L-species 347
Product of A-weighted sets 82
Product of species 32 410 413 414 416 418
Product of virtual species 122
Product of weighted multisort species 104
Product of weighted species 84
Product ordinal 348 349
Pseudo-leftist binary trees 246
Pure simplicial complexes 78
q-analogue 339 347
q-series associated to species 339
Quotient species 147 159
R-enriched, endofunctions 172—173 184 200 218 220
R-enriched, endofunctions, connected 202
R-enriched, endofunctions, partial 172 200
R-enriched, fibers 113
R-enriched, functions 170
R-enriched, permutations 218
R-enriched, rooted trees 165 169 170 181 201 207 224—228 239 260 273 275 281 329 383 410 424—429
R-enriched, rooted trees, unlabelled 263 275
R-enriched, trees 178—182 281 335 410
Radius of convergence 263
Random permutations 64
Random set partitions 63
Random simple graphs 64
Random structures 63 69
Read — Bajraktarevic (functional equation) 230 238 245
Read — Bajraktarevic (functional equation), linear 233
Read — Bajraktarevic (functional equation), Newton — Raphson iteration 246
Recurrent elements 40 86
Red, reduced posets 57
Reduced form of virtual species 122 148 151—152
Reduced order relations (partial orders) 57 138
Regular octopuses 56
Реклама