Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Limiting polytope geometry for rigid rods, disks, and spheres
Авторы: Stillinger F.H., Salsburg Z.W.
Аннотация:
The available configuration space for finite systems of rigid particles separates into equivalent disconnected regions if those systems are highly compressed. This paper presents a study of the geometric properties of the limiting high-compression regions (polytopes) for rods, disks, and spheres. The molecular distribution functions represent cross sections through the convex polytopes, and for that reason they are obliged to exhibit single-peak behavior by the Brünn-Minkowski inequality. We demonstrate that increasing system dimensionality implies tendency toward nearest-neighbor particle-pair localization away from contact. The relation between the generalized Euler theorem for the limiting polytopes and cooperative jamming of groups of particles is explored. A connection is obtained between the moments of inertia of the polytopes (regarded as solid homogeneous bodies) and crystal elastic properties. Finally, we provide a list of unsolved problems in this geometrical many-body theory.