Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Stillinger F.H., Salsburg Z.W. — Limiting polytope geometry for rigid rods, disks, and spheres
Stillinger F.H., Salsburg Z.W. — Limiting polytope geometry for rigid rods, disks, and spheres



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Limiting polytope geometry for rigid rods, disks, and spheres

Авторы: Stillinger F.H., Salsburg Z.W.

Аннотация:

The available configuration space for finite systems of rigid particles separates into equivalent disconnected regions if those systems are highly compressed. This paper presents a study of the geometric properties of the limiting high-compression regions (polytopes) for rods, disks, and spheres. The molecular distribution functions represent cross sections through the convex polytopes, and for that reason they are obliged to exhibit single-peak behavior by the Brünn-Minkowski inequality. We demonstrate that increasing system dimensionality implies tendency toward nearest-neighbor particle-pair localization away from contact. The relation between the generalized Euler theorem for the limiting polytopes and cooperative jamming of groups of particles is explored. A connection is obtained between the moments of inertia of the polytopes (regarded as solid homogeneous bodies) and crystal elastic properties. Finally, we provide a list of unsolved problems in this geometrical many-body theory.


Язык: en

Рубрика: Наука/

Тип: Статья

Статус предметного указателя: Неизвестно

ed2k: ed2k stats

Год издания: 1969

Количество страниц: 47

Добавлена в каталог: 24.03.2012

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте