Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Relaxation mode analysis of nonlinear birth and death processes
Автор: Matsuo K.
Аннотация:
Nonlinear birth and death processes with one variable are considered. The general master equations describing these processes are analyzed in terms of their eigenmodes and eigenvalues using the method of a WKB approximation. Formulas for the density of eigenstates are obtained. The lower lying eigenmodes are calculated to investigate long-time relaxation, such as relaxations of metastable and unstable states. Anomalous accumulation of the lower lying eigenvalues is shown to exist when the system is infinitesimally close to a critical or marginal state. The general results obtained are applied to some instructive examples, such as the kinetic Weiss-Ising model and a stochastic model of nonlinear chemical reactions.