Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Rajaraman R. — Solitons and instantons
Rajaraman R. — Solitons and instantons



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Solitons and instantons

Àâòîð: Rajaraman R.

Àííîòàöèÿ:

This book offers an elementary and unified introduction to the non-perturbative results obtained in relativistic quantum field theory based on classical soliton and instanton solutions. Such solutions are derived for a variety of models and classified by topological indices. The methods are then developed for quantizing solitons to obtain quantum particles. Vacuum tunneling, &ugr;-vacua and the dilute-instanton-gas approximation are described in detail. Other instanton effects related to quark-quark forces, confinement, the U(1) problem and Borel summability are also discussed. The emphasis is on presenting the basic ideas in a simple pedagogical way. Technical tools like functional methods, Grassman integrals, homotopy classification, collective co-ordinates etc. are developed ab initio.
The presentation of this work is kept at a fairly simple level and ideas are developed through illustrative examples. Techniques not covered in older field theory textbooks, such as functional integral methods, are presented in some detail to the necessary extent. These techniques are important in their own right. Although the book is mainly addressed to particle physicists and quantum field theorists, several portions will be of relevance to other branches of physics, particularly statistical mechanics. These include three chapters devoted to deriving classical soliton and instanton solutions and one on collective co-ordinates, as well as sections devoted to general techniques


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1989

Êîëè÷åñòâî ñòðàíèö: 409

Äîáàâëåíà â êàòàëîã: 08.12.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Quantum chromodynamics (QCD), possible confinement in      348 351
Quantum electrodynamics (QED) of a charged scalar field      357
Quantum electrodynamics (QED), divergence of perturbation series      374
Quarks in QCD      359
Quarks, confinement of      351 357—358
Quarks, flavours of      359
Quarks, massless      360 361
Rapidity variables      226
Rapidity variables, unitarity, analyticity and crossing in      226—227
Renormalisation of quantum kink mass      144—150
Renormalisation of SG soliton mass      202—203
Renormalisation of the gauge coupling constant      346—347
Renormalisation of Yang — Mills instanton contribution      345—347
Restoration of symmetry by instantons in PPP      314
Restoration of symmetry in the isotropic ferromagnet      80
Restoration of symmetry, absence of in SG model      317—318
Running gauge-coupling-constant      8 346—347
S-matrix theory      8
S-matrix theory, application in (1 + 1) dimensions      225—236 see
Self-duality condition      99
Self-duality condition, analogues in other models      55 70 120
Semi-classical method and QCD      4—5 302
Semi-classical method and tunnelling      306—314
Semi-classical method and zero modes      142 150—152 237—248
Semi-classical method for quantising periodic solitons      187—195
Semi-classical method for quantising static solitons      137—166
Semi-classical method in the presence of Fermi fields      281—302
Semi-classical method, condition for validity      196—197
Semi-classical method, general limitations of      4 196
Semi-classical models of hadrons      4
Semi-classical models of hadrons, theoretical framework      289—291 302
Sine-Gordon (SG) solitons, as fermions      199 213—219
Sine-Gordon (SG) solitons, quantisation of      201—203
Sine-Gordon (SG) solitons, the classical solution      37
Sine-Gordon (SG) system      35
Sine-Gordon (SG) system, anti-soliton of      37
Sine-Gordon (SG) system, classical solutions of      37—40
Sine-Gordon (SG) system, doublets or breathers of      40
Sine-Gordon (SG) system, equivalence to massive thirring model      213—215
Sine-Gordon (SG) system, exact S-matrix of      233—235
Sine-Gordon (SG) system, O(2) invariance of      233
Sine-Gordon (SG) system, quantisation of      201—213
Sine-Gordon (SG) system, soliton of      37
Sine-Gordon (SG) system, two-soliton solutions      38—40
Size of solitons/instantons in $\phi^4$ theory      22
Size of solitons/instantons in PPP      313
Size of solitons/instantons in the $CP_N$ model      122
Size of solitons/instantons in the abelian Higgs model      78 114 331
Size of solitons/instantons in the O(3) model      58
Size of solitons/instantons in the Yang — Mills system      105 344—345
Size of solitons/instantons, importance of      313 344—345
Solitary waves in (1 + 1) dimensions      16—31
Solitary waves in 2-dimensional isotropic ferromagnets      80
Solitary waves of the abelian Higgs model      75—78
Solitary waves of the O(3) model      57—58
Solitary waves under Lorentz transformations      22—23 125
Solitary waves, as distinct from solitons      15—16
Solitary waves, being often referred to as solitons      15—16 45
Solitary waves, definition of      13—14
Solitary waves, long range forces between      81—82
Solitary waves, quantisation of      see "Quantisation"
Solitary waves, static solutions as      14
Soliton creation operator      218—219
Soliton sector of states      153
Soliton sector of states with half-integral charge      295—298
Soliton sector of states, canonical commutation rules in      162—164
Soliton sector of states, energy levels of kink sector      141—142
Soliton sector of states, stability of      155—156
Soliton sector of states, topological quantum number of      155
Solitons      see "Solitary waves"
Solitons in quantum SG theory      201—203
Solitons of the SG system      37
Solitons, definition of      14
Solitons, distinction from solitary waves      15
Solitons, meaning in popular usage      15—16
Spin from isospin      73
Spontaneous symmetry breaking in (1 + 1) dimensional $\phi^4$-theory      13 139
Spontaneous symmetry breaking in the Higgs phenomenon      318—319
Spontaneous symmetry breaking in the O(3) model      50
Spontaneous symmetry breaking in the sine-Gordon theory      200 317
Spontaneous symmetry breaking of chiral SU(2) $\otimes$ SU(2)      360
Stability angles, analogy to Floquet indices      287
Stability angles, definition of      189—190
Stability angles, stability angles in Held theory      194
Stationary phase approximation (SPA) and the Bohr — Sommerfeld condition      183—187
Stationary phase approximation (SPA) in field theory      194
Stationary phase approximation (SPA), definition      170
Stereographic projection      56
Time reversal symmetry and axions      383
Time reversal symmetry, violation by $\theta$-vacua      343 382
Topological index or charge and fermionic zero modes      298 367
Topological index or charge for scalar fields in (1 + 1) dimensions      31—34
Topological index or charge for the monopole solutions      64—65
Topological index or charge for the O(3) model      51—52 54
Topological index or charge for Yang — Mills instantons      91
Topological index or charge, as quantum numbers      155—156
Topological index or charge, conservation of, in (1 + 1) dimensions      32—33
Topological index or charge, currents associated with      33 64 92
Topological vacua and cluster decomposition      370—372
Topological vacua, definition of      325
Topological vacua, suppression of tunnelling      362—370
Topological vacua, tunnelling between      331—332 341—343
Translation mode in instanton calculations      307—308 390—393
Translation mode in kink quantisation      142
Translation mode, origin of      150—151
Translation mode, treatment of      252—263
Tunnelling and the semi-classical method and real-time amplitudes      312 384
Tunnelling and the semi-classical method in abelian gauge theory      325 332
Tunnelling and the semi-classical method in non-relativistic quantum mechanics      130 303—318
Tunnelling and the semi-classical method in the presence of fermions      367—370
Tunnelling and the semi-classical method in Yang — Mills theory      340—341
Tunnelling and the semi-classical method, tunnelling barrier      314 340—341
Turning points of orbits      187 189 388—389
U(1) problem      361 see
Unitarity      225
Unitarity for (1 + 1) dimensional O(N) models      227
Vacuum angle "$\theta$"      334 341
Vacuum angle "$\theta$", as a parameter in the Lagrangian      335 343
Vacuum of QCD with massless fermions      370—373
Vacuum of the abelian Higgs model      320 325
Vacuum of the symmetric $\phi^4$ theory      136
Vacuum of the symmetry-broken $\phi^4$ theory      138—139
Vacuum of the Yang — Mills theory      341
Vacuum sector of states in the $\phi^4$ theory      138—139
Vacuum sector of states in the sine-Gordon theory      200
Vacuum sector of states, doublet states in      208
Vacuum tunelling in abelian Higgs model      331—332
Vacuum tunelling in higher SU(N) groups      343
Vacuum tunelling in Yang — Mills theory      341—343
Vacuum tunelling, suppression by massless fermions      362—370
Virial theorem      47—48
Virial theorem and the Euclidean SG model      318
Virial theorem and the O(3) model      48—49
Weak coupling condition and the Yang — Mills system      347—350
Weak coupling condition in non-relativistic quantum mechanics      128
Weak coupling condition in scalar field theory      134
Weak coupling condition, relationship to small-h condition      197—198
Wilson loop, abelian case      353 381
Wilson loop, non-abelian case      357 381
WKB method      see "Semi-classical method"
WKB Method and the Bohr — Sommerfeld condition      186
WKB Method and weak coupling      196—198
WKB Method in field theory      187—195
WKB Method, accuracy of, for anharmonic oscillator      196
WKB Method, exactness of results for the SG bound states      211—213
WKB Method, fluctuation factor      385—389
WKB Method, using path integrals      183—187
Yang — Mills theory, $\theta$-vacua and sectors in      341—343
Yang — Mills theory, definition      87
Yang — Mills theory, gauge equivalence in      340
Yang — Mills theory, gauge transformations in      87
Yang — Mills theory, Gauss' theorem in      339
Yang — Mills theory, homotopy classification      89—98 338
Yang — Mills theory, instantons of      102—111
Yang — Mills theory, large instanton problem in      344—347
Yang — Mills theory, running coupling constant in      346—347
Yang — Mills theory, topological vacua of      340
Yang — Mills theory, vacuum tunnelling in      341—343
Zero energy fermion modes and suppression of tunnelling      367—368
Zero energy fermion modes in the presence of single instanton      368
Zero energy fermion modes, consequences of, in soliton quantisation      295—298
Zero energy fermion modes, example in (1 + 1) dimensions      293—294
Zero energy fermion modes, examples in higher dimensions      298 367—368
Zero energy fermion modes, relation to Pontryagin index      367
Zero modes in boson field theory and kink quantisation      142 150—153
Zero modes in boson field theory in a U(1) symmetric model      244
Zero modes in boson field theory in instanton physics      345 381 393
Zero modes in boson field theory, due to translation symmetry      254
Zero modes in boson field theory, principles behind treatment of      237—243
Zero modes in boson field theory, qualitative discussion      150—153
Zero modes in boson field theory, treatment in field theory      252—263
Zero modes in non-relativistic quantum mechanics in 1-dimension      131
Zero modes in non-relativistic quantum mechanics in 2-dimensions      237—243
Zero modes in non-relativistic quantum mechanics in instanton calculations      307—308 390
1 2
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå