Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Edward C. Posner, Eugene R. Rodemich — Differential entropy and tiling
Edward C. Posner, Eugene R. Rodemich — Differential entropy and tiling



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Differential entropy and tiling

Авторы: Edward C. Posner, Eugene R. Rodemich

Аннотация:

his paper relates the differential entropy of a sufficiently nice probability density functionp on Euclideann-space to the problem of tilingn-space by the translates of a given compact symmetric convex setS with nonempty interior. The relationship occurs via the concept of the epsilon entropy ofn-space under the norm induced byS, with probability induced byp. An expression is obtained for this entropy asapproaches 0, which equals the differential entropy ofp, plusn times the logarithm of 2/, plus the logarithm of the reciprocal of the volume ofS, plus a constantC(S) depending only onS, plus a term approaching zero with. The constantC(S) is called the entropic packing constant ofS; the main results of the paper concern this constant. It is shown thatC(S) is between 0 and 1; furthermore,C(S) is zero if and only if translates ofS tile all ofn-space.


Язык: en

Рубрика: Физика/

Тип: Статья

Статус предметного указателя: Неизвестно

ed2k: ed2k stats

Год издания: 1969

Количество страниц: 12

Добавлена в каталог: 18.03.2012

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте