Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Laird P.D. — Learning from good and bad data
Laird P.D. — Learning from good and bad data



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Learning from good and bad data

Автор: Laird P.D.

Аннотация:

Learning from Good and Bad Data explains the firm theoretical foundation that underlies much of the experimental research in machine learning. While the thrust of the work is theoretical, the presentation is accessible to theorists and practitioners, specialists and nonspecialists in the rapidly developing field of machine learning. Empirical learning (learning from example) is studied mathematically in order to uncover the formal structures common to much of the artificial intelligence experimental work on the subject.


Язык: en

Рубрика: Computer science/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1988

Количество страниц: 211

Добавлена в каталог: 08.12.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
$h$-equivalent      29
$h$-monotonic      67
$pac$-identification      117
$\epsilon$-bad      142
$\epsilon$-good      142
$\odot$-component      67
$\oplus$-component      67
APC (annotated predicate calculus)      93
Bias      14
Boolean algebra      57
Borel - Cantelli Lemma      116
Bounding set      61
Classification      13
Clause      97
Clause form      17 19
Clause-form sentence      81
Complete, semantically      35
complexity      111
Component      67 68
Concept      13 21
Concept learning      13
Confidence      118
Conjunctive normal form (CNF)      97 171
Conjunctive rules      14
Conservative      44
Consistent      44
Converge      23
Convergence      6
Convergence, stochastic      114
Correct      68
Correct rule      142
Correspondence principle      134 140
Counterexample      8
Decision tree      14 131
Diagnosis problem      70
Disjunction, internal      14
Disjunctive normal form (DNF)      136
Disjunctive rules      14
Downward      34
Downward refinement      39
Drift      136
Enumeration, identification by      23
Error      113
example      8
Example, training      19 20
Fairness      159
Finite, locally      56
formulas      96
Generalize      10
Good rule      142
Grammatical inference      10
Harmful      125 166
Herbrand universe      97
Hoeffding's inequality      145
Homomorphism, order      28
Horn      97
Identification in the limit      6
Identification in the limit, probabilistic      119
Identification in the limit, problem      3 18
Identification in the limit, procedure      22
Important component      166
Incremental      25 115
Indentification, probabilistic      117
Inductive bias      78 89
Instance      19
Interpretation      97
Language, extended pattern      31
Language, pattern      29
Limit, identification in the      6
Literal      97
Logic, equational      37
Logical theory      16
Lower bounding set      61
Maximal component      71
Maximal expression      61
Minimal component      71
Minimal expression      61
Model      97
Model, Herbrand      17
Most-general literal      85
Most-general terms      85
Noise      134
Noise, adversarial      179
Noise, Bernoulli      183
Noise, classification      135 140
Noise, rate ($\eta$)      153
Normal-form expression      122 162
Normal-form property      66 67
Operator, refinement      27 36
OQI      31
Order homomorphism      28
Order quasi-isomorphism      31
Ordering      28
Ordering, partial      28
Ordering, quasi      28
Ordering, semantically complete      35
Pattern language      29 112
Pattern language, extended      31
Positive example      8
Presentation, sufficient      20
Problem, identification      18
Procedure, identification      22
Process, adversarial noise (ANP)      179
Process, adversarial noise (ANP), Bernoulli noise      183
Process, adversarial noise (ANP), classification noise      135
Refinement, clause      85
Refinement, complete      80
Refinement, component      71
Refinement, downward      34 39
Refinement, identification by downward      49
Refinement, identification by upward      45
Refinement, less-general      79
Refinement, locally finite      56
Refinement, more-general      79
Refinement, operator      27
Refinement, partial      90
Refinement, relation      35
Refinement, sentence      87
Refinement, separable      65
Refinement, universal      55 77 81
Refinement, upward      34 36
Resolution      82
Robustness      111
Rule space      19
Semantically complete      61 71
Sentence      97
Separable      65
Single-representation trick      20
Space, rule      19
Specialize      10
Strong bias      90
Subrefinement      80
Subsumption      9
Sufficient presentation      20
Tautology      97
Terms      96
Theory, logical      16
Tolerance      117
Too general      68
Too specific      68
Tree, decision      14
Unsatisfiable      98
Upper bounding set      61
Upward      34
Upward refinement      36
Vapnik-Chervonenkis dimension      127 148
Version space      15
Weak bias      90
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте