Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Integrable systems in celestial mechanics.
Автор: Ó'Mathúna Diarmuid
Аннотация:
Integrable systems in celestial mechanics
Diarmuid Ó'Mathúna
This work presents a unified treatment of three important integrable problems relevant to both Celestial and Quantum Mechanics. Under discussion are the Kepler (two-body) problem and the Euler (two-fixed center) problem, the latter being the more complex and more instructive, as it exhibits a richer and more varied solution structure. Further, because of the interesting investigations by the 20th century mathematical physicist J.P. Vinti, the Euler problem is now recognized as being intimately linked to the Vinti (Earth-satellite) problem.
Here the analysis of these problems is shown to follow a definite shared pattern yielding exact forms for the solutions. A central feature is the detailed treatment of the planar Euler problem where the solutions are expressed in terms of Jacobian elliptic functions, yielding analytic representations for the orbits over the entire parameter range. This exhibits the rich and varied solution patterns that emerge in the Euler problem, which are illustrated in the appendix. A comparably detailed analysis is performed for the Earth-satellite (Vinti) problem.