Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Williamson S. — Combinatorics for computer science
Williamson S. — Combinatorics for computer science



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Combinatorics for computer science

Автор: Williamson S.

Аннотация:

Useful guide covers two major subdivisions of combinatorics — enumeration and graph theory — with emphasis on conceptual needs of computer science. Each part is divided into a "basic concepts" chapter emphasizing intuitive needs of the subject, followed by four "topics" chapters that explore these ideas in depth. Invaluable practical resource for graduate students, advanced undergraduates, and professionals with an interest in algorithm design and other aspects of computer science and combinatorics.


Язык: en

Рубрика: Computer science/Дискретная математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1985

Количество страниц: 479

Добавлена в каталог: 25.11.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Multigraph      225
Multinomial coefficient      95 173
Multinomial index      93 109
Multiset      225
Natural directed tree      232
Natural direction      256
Natural representation      383
Network flows      200
NEXT(T)      245
NEXTPERM      242
Nondecreasing functions      86 91 92 148 168
Normalized basis sequence      177
Null space      364
Nullity      270 301
Odd-even transposition sort      59
One-line notation      5 77 134
One-to-one      134
Onto      133
Optimal number of comparisons S(n)      65
Orbit consistent      120
Orbit diagram      263
Orbits of group actions      114 117 121 241
Order compatible listing      193
Order isomorphism      32 77 87 88
Order preserving bijection      7
Order relation      3
Ordered graph      226
Ordered partition      23 78 93 94
Ordered rooted tree      231 288
Ordered tree      231
Orderly algorithm      159 160 161 260 264
Orderly map      160 161
Ordinary generating function      165
ORTR      231
OUTCUT      203
OUTOF(v)      202
PALN(tree)      65
Parallel extension      403
Partition      4 95
Partition functions      432
Partition matroids      393
Partition tree      24 28
Partition tree for decreasing functions      30
Path      226
Path tree      300
PATH(e)      300
Pattern enumeration      148
PEND(T)      228
Pendant vertex      228
PER(A)      261
Permanents      187
Permutation groups      115
permutations      5 82 86 115 134
Permutations by adjacent marks      85
Phillip Hall condition      392
Planar embedding      280 306 356
Po1ya action      136
Po1ya action identity      138
Po1ya enumeration theory      114 133
Po1ya weights      142
Po1ya’s theorem      138 139
POINTER      10
Pointwise minimal      441
Polynomial of binomial type      173 180 181
POSE(T)      234
POSET      440
Poset of partitions      197 199
Poset of subsets      194
Postlex order      18
Postorder      292
Postorder sequences      234
POSV(T)      234
Power series      165 181
PREE(T)      234
Prelex order      17
Preorder      292
Preorder sequences      234
PREV(T)      234
Principal columns      363
Principal independent set      441
Principal subtrees      180 233
Probleme des menages      185 186
Product action      120 121
Product of posets      194
Projective plane      368
Proper backedges      302 314
Properly ordered decomposition      295
PRU(T)      229 231
Pruffer sequence      229
Quicksort      55 65
Rado’s Theorem      392
random selection      35
RANGE      133
Range action      161
Rank      32 34 76 148 269 421 425
Rank function      373 381
Rank of a matroid      360
Rational function field      362 368
Recursion tree      238 239
REDSEG(Z)      322
Reduced carrier      348 350
Reduced delete-contract tree      418
Reduced tree      26 27 79 106
Refinement of a partition      23
Reflexive relation      3
Regular matroid      382 383
Relatively prime      185
Representable matroid      367 384
Residual tree      32 33 79 105
Restricted growth functions      97 98
Restriction of matroids      397 414
Retreat segment      327
Reverse lex order      87
RG function      103
Ring      361
Rook placements      185
Rook-plank theorem      207 211
Rooted forests      180
Rooted trees      180 231 288
Row canonical form      441
Row echelon form      363
Row matroid      360
Search greedoid      449
SEGFO(e, H)      318
SEGGR(e)      303
SEGGR(e, H)      318
SEGLST(e)      303
Segment      301
Segment forests      320
Segment graph      303
Selection sort      48 59
Separation classes      341
Separation pairs      237 338
Separator      207
Series extension      403
Set partitions      176
Set partitions by type      162
Shell’s method      50
Shift basis      177 181
Simple bridge      275
Simple induced matroids      388
Singleton chain      209
Sink      200 202
Sledgehammer      198
Sloppy planarity algorithm      282
Son      232 244
Sorting network      57 58 59
Sorting strategy      56 57
Source      200 202
span      382
Spanning forest      246 269 306
Spanning set      374
Spanning subgraph      246 269
Spanning tree      246
Stability subgroup      118 262
Stable action matrix      119 121
STACK(e)      234
STACKS(T)      234
Standard form of a partition      163
Standard matrix      404
Standard representation      407
STAR(V)      202
Stirling numbers      109 176 240
Strict gammoid      396
Structural diagram      10
Subgraph      244
Submatroid      419
Subset action      261
Subtree      246 288
Support      406
Surjection      5 133
Surjective RG functions      106
Symmetric relation      3
Symmetry group of the cube      144
Symmetry recursive      42
System of representatives      23 42 121 392
Tail coefficients      99 101 102
Tail of length n      97
Terminal vertices or leaves      24
Towers of Hanoi      235 239
TR(V)      231
TR(V, v)      258
Transitive relation      3
Translation operator      179
Transposition      135
Transversal      209
Transversal matroids      388 391 392
Tree blind      384
Tree of cycles      298
Tree of paths      298
Trees      180 227 288
Triconnected      338
Triconnectivity algorithm      347
Truncated complete binary tree      51
Truncation of matroids      401
Tutte polynomial      430 434 438
Tutte — Grothendieck invariant      432
Twisting      384
Two-line notation      134
Type of a partition      157
Type of a permutation      139
Type tree      162 163 164
Umbral operators      181
UND(G)      232
Uniform matroid      360 367 389
Union of matroids      393
Unit row echelon form      363
Unlabeled graph      262
Unordered set partition      95
Unrank      32 35 76 108 148
Upper representation      196
Value of the flow      203
Vamos matroid      370
Vertex      224
Vertex capacity      206
Vertex cover      207 209 211
Vertex disjoint paths      207
Vertices of attachment      338
Weight functions      186
Weighted inclusion-exclusion      187
White’s lemma      130 131 132
White’s theorem      141
Whitney numbers of the first kind      438
Whitney polynomial      428
Wreath product      143 144 155
Wreath product identity      146
Zero-one principle      69
Zeta function      191 195
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте